Plug and play distributed model predictive control based on distributed invariance and optimization

This paper presents a method for plug-and-play distributed MPC of a network of interacting linear systems. The previously introduced idea of plug and play control addresses the challenge of performing network changes in the form of subsystems that are joining or leaving the network during closed-loo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zeilinger, M. N., Pu, Y., Riverso, S., Ferrari-Trecate, G., Jones, C. N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5776
container_issue
container_start_page 5770
container_title
container_volume
creator Zeilinger, M. N.
Pu, Y.
Riverso, S.
Ferrari-Trecate, G.
Jones, C. N.
description This paper presents a method for plug-and-play distributed MPC of a network of interacting linear systems. The previously introduced idea of plug and play control addresses the challenge of performing network changes in the form of subsystems that are joining or leaving the network during closed-loop operation, while maintaining stability and constraint satisfaction. This work extends these ideas to an iterative distributed MPC scheme for systems with strong coupling by employing a recently proposed method for distributed MPC that takes the coupling dynamics into account in the form of time-varying terminal sets and distributed optimization. A distributed synthesis procedure for the update of the local control laws is proposed together with a transition scheme preparing the system for the upcoming modifications. This enables automatic plug-and-play operation, including rejection if the new network topology is infeasible. Both the synthesis and online control are entirely distributed and are only based on local information on the subsystems and their coupled neighbors. Finally, the proposed scheme is applied to the problem of frequency control in a power network.
doi_str_mv 10.1109/CDC.2013.6760799
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6760799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6760799</ieee_id><sourcerecordid>6760799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-5ea07ff0918d04fd55abf0051b8f2f2df18df4ace101cf9bf8fe04e71e388ffd3</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhSMq2NbuBTf5A1PvnUeSWcr4hIIudF0yyb0SmRczaaH-eovWhavDefAtjhBXCCtEKG-qu2qVAmYrpRXosjwRy1IbzJXOCo06OxXzP5OrMzEDLDFJU1QXYj5NnwBgQKmZcK_N9kPazsuhsXvpwxTHUG8jedn2nho5jOSDi2FH0vVdHPtG1nY61H33bx26nR2D7Rz90PohhjZ82Rj67lKcs20mWh51Id4f7t-qp2T98vhc3a4Tl6o8JgVZ0MxQovGQsy8KWzNAgbXhlFPPh5xz6wgBHZc1GybISSNlxjD7bCGuf7mBiDbDGFo77jfHg7Jvu-tajQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Plug and play distributed model predictive control based on distributed invariance and optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zeilinger, M. N. ; Pu, Y. ; Riverso, S. ; Ferrari-Trecate, G. ; Jones, C. N.</creator><creatorcontrib>Zeilinger, M. N. ; Pu, Y. ; Riverso, S. ; Ferrari-Trecate, G. ; Jones, C. N.</creatorcontrib><description>This paper presents a method for plug-and-play distributed MPC of a network of interacting linear systems. The previously introduced idea of plug and play control addresses the challenge of performing network changes in the form of subsystems that are joining or leaving the network during closed-loop operation, while maintaining stability and constraint satisfaction. This work extends these ideas to an iterative distributed MPC scheme for systems with strong coupling by employing a recently proposed method for distributed MPC that takes the coupling dynamics into account in the form of time-varying terminal sets and distributed optimization. A distributed synthesis procedure for the update of the local control laws is proposed together with a transition scheme preparing the system for the upcoming modifications. This enables automatic plug-and-play operation, including rejection if the new network topology is infeasible. Both the synthesis and online control are entirely distributed and are only based on local information on the subsystems and their coupled neighbors. Finally, the proposed scheme is applied to the problem of frequency control in a power network.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 1467357146</identifier><identifier>ISBN: 9781467357142</identifier><identifier>EISBN: 9781467357173</identifier><identifier>EISBN: 1479913812</identifier><identifier>EISBN: 1467357170</identifier><identifier>EISBN: 9781479913817</identifier><identifier>DOI: 10.1109/CDC.2013.6760799</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Cost function ; Couplings ; Nickel ; Plugs ; Steady-state</subject><ispartof>52nd IEEE Conference on Decision and Control, 2013, p.5770-5776</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-5ea07ff0918d04fd55abf0051b8f2f2df18df4ace101cf9bf8fe04e71e388ffd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6760799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6760799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeilinger, M. N.</creatorcontrib><creatorcontrib>Pu, Y.</creatorcontrib><creatorcontrib>Riverso, S.</creatorcontrib><creatorcontrib>Ferrari-Trecate, G.</creatorcontrib><creatorcontrib>Jones, C. N.</creatorcontrib><title>Plug and play distributed model predictive control based on distributed invariance and optimization</title><title>52nd IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>This paper presents a method for plug-and-play distributed MPC of a network of interacting linear systems. The previously introduced idea of plug and play control addresses the challenge of performing network changes in the form of subsystems that are joining or leaving the network during closed-loop operation, while maintaining stability and constraint satisfaction. This work extends these ideas to an iterative distributed MPC scheme for systems with strong coupling by employing a recently proposed method for distributed MPC that takes the coupling dynamics into account in the form of time-varying terminal sets and distributed optimization. A distributed synthesis procedure for the update of the local control laws is proposed together with a transition scheme preparing the system for the upcoming modifications. This enables automatic plug-and-play operation, including rejection if the new network topology is infeasible. Both the synthesis and online control are entirely distributed and are only based on local information on the subsystems and their coupled neighbors. Finally, the proposed scheme is applied to the problem of frequency control in a power network.</description><subject>Control systems</subject><subject>Cost function</subject><subject>Couplings</subject><subject>Nickel</subject><subject>Plugs</subject><subject>Steady-state</subject><issn>0191-2216</issn><isbn>1467357146</isbn><isbn>9781467357142</isbn><isbn>9781467357173</isbn><isbn>1479913812</isbn><isbn>1467357170</isbn><isbn>9781479913817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLAzEUhSMq2NbuBTf5A1PvnUeSWcr4hIIudF0yyb0SmRczaaH-eovWhavDefAtjhBXCCtEKG-qu2qVAmYrpRXosjwRy1IbzJXOCo06OxXzP5OrMzEDLDFJU1QXYj5NnwBgQKmZcK_N9kPazsuhsXvpwxTHUG8jedn2nho5jOSDi2FH0vVdHPtG1nY61H33bx26nR2D7Rz90PohhjZ82Rj67lKcs20mWh51Id4f7t-qp2T98vhc3a4Tl6o8JgVZ0MxQovGQsy8KWzNAgbXhlFPPh5xz6wgBHZc1GybISSNlxjD7bCGuf7mBiDbDGFo77jfHg7Jvu-tajQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Zeilinger, M. N.</creator><creator>Pu, Y.</creator><creator>Riverso, S.</creator><creator>Ferrari-Trecate, G.</creator><creator>Jones, C. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Plug and play distributed model predictive control based on distributed invariance and optimization</title><author>Zeilinger, M. N. ; Pu, Y. ; Riverso, S. ; Ferrari-Trecate, G. ; Jones, C. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-5ea07ff0918d04fd55abf0051b8f2f2df18df4ace101cf9bf8fe04e71e388ffd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Control systems</topic><topic>Cost function</topic><topic>Couplings</topic><topic>Nickel</topic><topic>Plugs</topic><topic>Steady-state</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeilinger, M. N.</creatorcontrib><creatorcontrib>Pu, Y.</creatorcontrib><creatorcontrib>Riverso, S.</creatorcontrib><creatorcontrib>Ferrari-Trecate, G.</creatorcontrib><creatorcontrib>Jones, C. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeilinger, M. N.</au><au>Pu, Y.</au><au>Riverso, S.</au><au>Ferrari-Trecate, G.</au><au>Jones, C. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Plug and play distributed model predictive control based on distributed invariance and optimization</atitle><btitle>52nd IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>5770</spage><epage>5776</epage><pages>5770-5776</pages><issn>0191-2216</issn><isbn>1467357146</isbn><isbn>9781467357142</isbn><eisbn>9781467357173</eisbn><eisbn>1479913812</eisbn><eisbn>1467357170</eisbn><eisbn>9781479913817</eisbn><abstract>This paper presents a method for plug-and-play distributed MPC of a network of interacting linear systems. The previously introduced idea of plug and play control addresses the challenge of performing network changes in the form of subsystems that are joining or leaving the network during closed-loop operation, while maintaining stability and constraint satisfaction. This work extends these ideas to an iterative distributed MPC scheme for systems with strong coupling by employing a recently proposed method for distributed MPC that takes the coupling dynamics into account in the form of time-varying terminal sets and distributed optimization. A distributed synthesis procedure for the update of the local control laws is proposed together with a transition scheme preparing the system for the upcoming modifications. This enables automatic plug-and-play operation, including rejection if the new network topology is infeasible. Both the synthesis and online control are entirely distributed and are only based on local information on the subsystems and their coupled neighbors. Finally, the proposed scheme is applied to the problem of frequency control in a power network.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2013.6760799</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 52nd IEEE Conference on Decision and Control, 2013, p.5770-5776
issn 0191-2216
language eng
recordid cdi_ieee_primary_6760799
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control systems
Cost function
Couplings
Nickel
Plugs
Steady-state
title Plug and play distributed model predictive control based on distributed invariance and optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Plug%20and%20play%20distributed%20model%20predictive%20control%20based%20on%20distributed%20invariance%20and%20optimization&rft.btitle=52nd%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Zeilinger,%20M.%20N.&rft.date=2013-01-01&rft.spage=5770&rft.epage=5776&rft.pages=5770-5776&rft.issn=0191-2216&rft.isbn=1467357146&rft.isbn_list=9781467357142&rft_id=info:doi/10.1109/CDC.2013.6760799&rft_dat=%3Cieee_6IE%3E6760799%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467357173&rft.eisbn_list=1479913812&rft.eisbn_list=1467357170&rft.eisbn_list=9781479913817&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6760799&rfr_iscdi=true