Separable Lyapunov functions for monotone systems
Separable Lyapunov functions play vital roles, for example, in stability analysis of large-scale systems. A Lyapunov function is called max-separable if it can be decomposed into a maximum of functions with one-dimensional arguments. Similarly, it is called sum-separable if it is a sum of such funct...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4594 |
---|---|
container_issue | |
container_start_page | 4590 |
container_title | |
container_volume | |
creator | Rantzer, Anders Ruffer, Bjorn S. Dirr, Gunther |
description | Separable Lyapunov functions play vital roles, for example, in stability analysis of large-scale systems. A Lyapunov function is called max-separable if it can be decomposed into a maximum of functions with one-dimensional arguments. Similarly, it is called sum-separable if it is a sum of such functions. In this paper it is shown that for a monotone system on a compact state space, asymptotic stability implies existence of a max-separable Lyapunov function. We also construct two systems on a non-compact state space, for which a max-separable Lyapunov function does not exist. One of them has a sum-separable Lyapunov function. The other does not. |
doi_str_mv | 10.1109/CDC.2013.6760604 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_6760604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6760604</ieee_id><sourcerecordid>oai_lup_lub_lu_se_115b002b_100b_40c5_abd8_d8cd71c3ad0e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-61be322e2757d54db11eb71313dda56f51ef9fd490484aaab6b355e24d227c253</originalsourceid><addsrcrecordid>eNo90EtLw0AUBeARFWxr94Kb_IHUe-eZLCU-IeBCXQ8zmRuItJmQSZT-ewutLg6Hs_kWh7EbhA0ilHfVQ7XhgGKjjQYN8oytS1Og1EYog0acs-XfkPqCLQBLzDlHfcWWKX0BQAFaLxi-0-BG57eU1Xs3zH38ztq5b6Yu9ilr45jtYh-n2FOW9mmiXbpml63bJlqfesU-nx4_qpe8fnt-re7rvOElTrlGT4Jz4kaZoGTwiOQNChQhOKVbhdSWbZAlyEI657z2QiniMnBuGq7EitVHN_3QMHs7jN3OjXsbXWe383CIP8QmsojKA3BvEcBbCY2yzofChqIJBhvhAtCBuz1yHRH9Y6f3xC9ekGB7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Separable Lyapunov functions for monotone systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rantzer, Anders ; Ruffer, Bjorn S. ; Dirr, Gunther</creator><creatorcontrib>Rantzer, Anders ; Ruffer, Bjorn S. ; Dirr, Gunther</creatorcontrib><description>Separable Lyapunov functions play vital roles, for example, in stability analysis of large-scale systems. A Lyapunov function is called max-separable if it can be decomposed into a maximum of functions with one-dimensional arguments. Similarly, it is called sum-separable if it is a sum of such functions. In this paper it is shown that for a monotone system on a compact state space, asymptotic stability implies existence of a max-separable Lyapunov function. We also construct two systems on a non-compact state space, for which a max-separable Lyapunov function does not exist. One of them has a sum-separable Lyapunov function. The other does not.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 1467357146</identifier><identifier>ISBN: 9781467357142</identifier><identifier>EISBN: 9781467357173</identifier><identifier>EISBN: 1479913812</identifier><identifier>EISBN: 1467357170</identifier><identifier>EISBN: 9781479913817</identifier><identifier>DOI: 10.1109/CDC.2013.6760604</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; Control Engineering ; Electrical Engineering, Electronic Engineering, Information Engineering ; Elektroteknik och elektronik ; Engineering and Technology ; Interconnected systems ; Large-scale systems ; Lyapunov functions ; Lyapunov methods ; monotone systems ; Reglerteknik ; stability ; Stability analysis ; Teknik ; Trajectory ; Vectors</subject><ispartof>52nd IEEE Conference on Decision and Control, 2013, p.4590-4594</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-61be322e2757d54db11eb71313dda56f51ef9fd490484aaab6b355e24d227c253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6760604$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6760604$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://lup.lub.lu.se/record/4360464$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Rantzer, Anders</creatorcontrib><creatorcontrib>Ruffer, Bjorn S.</creatorcontrib><creatorcontrib>Dirr, Gunther</creatorcontrib><title>Separable Lyapunov functions for monotone systems</title><title>52nd IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>Separable Lyapunov functions play vital roles, for example, in stability analysis of large-scale systems. A Lyapunov function is called max-separable if it can be decomposed into a maximum of functions with one-dimensional arguments. Similarly, it is called sum-separable if it is a sum of such functions. In this paper it is shown that for a monotone system on a compact state space, asymptotic stability implies existence of a max-separable Lyapunov function. We also construct two systems on a non-compact state space, for which a max-separable Lyapunov function does not exist. One of them has a sum-separable Lyapunov function. The other does not.</description><subject>Asymptotic stability</subject><subject>Control Engineering</subject><subject>Electrical Engineering, Electronic Engineering, Information Engineering</subject><subject>Elektroteknik och elektronik</subject><subject>Engineering and Technology</subject><subject>Interconnected systems</subject><subject>Large-scale systems</subject><subject>Lyapunov functions</subject><subject>Lyapunov methods</subject><subject>monotone systems</subject><subject>Reglerteknik</subject><subject>stability</subject><subject>Stability analysis</subject><subject>Teknik</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>0191-2216</issn><isbn>1467357146</isbn><isbn>9781467357142</isbn><isbn>9781467357173</isbn><isbn>1479913812</isbn><isbn>1467357170</isbn><isbn>9781479913817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo90EtLw0AUBeARFWxr94Kb_IHUe-eZLCU-IeBCXQ8zmRuItJmQSZT-ewutLg6Hs_kWh7EbhA0ilHfVQ7XhgGKjjQYN8oytS1Og1EYog0acs-XfkPqCLQBLzDlHfcWWKX0BQAFaLxi-0-BG57eU1Xs3zH38ztq5b6Yu9ilr45jtYh-n2FOW9mmiXbpml63bJlqfesU-nx4_qpe8fnt-re7rvOElTrlGT4Jz4kaZoGTwiOQNChQhOKVbhdSWbZAlyEI657z2QiniMnBuGq7EitVHN_3QMHs7jN3OjXsbXWe383CIP8QmsojKA3BvEcBbCY2yzofChqIJBhvhAtCBuz1yHRH9Y6f3xC9ekGB7</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Rantzer, Anders</creator><creator>Ruffer, Bjorn S.</creator><creator>Dirr, Gunther</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>D95</scope></search><sort><creationdate>201312</creationdate><title>Separable Lyapunov functions for monotone systems</title><author>Rantzer, Anders ; Ruffer, Bjorn S. ; Dirr, Gunther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-61be322e2757d54db11eb71313dda56f51ef9fd490484aaab6b355e24d227c253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic stability</topic><topic>Control Engineering</topic><topic>Electrical Engineering, Electronic Engineering, Information Engineering</topic><topic>Elektroteknik och elektronik</topic><topic>Engineering and Technology</topic><topic>Interconnected systems</topic><topic>Large-scale systems</topic><topic>Lyapunov functions</topic><topic>Lyapunov methods</topic><topic>monotone systems</topic><topic>Reglerteknik</topic><topic>stability</topic><topic>Stability analysis</topic><topic>Teknik</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Rantzer, Anders</creatorcontrib><creatorcontrib>Ruffer, Bjorn S.</creatorcontrib><creatorcontrib>Dirr, Gunther</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Lunds universitet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rantzer, Anders</au><au>Ruffer, Bjorn S.</au><au>Dirr, Gunther</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Separable Lyapunov functions for monotone systems</atitle><btitle>52nd IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2013-12</date><risdate>2013</risdate><spage>4590</spage><epage>4594</epage><pages>4590-4594</pages><issn>0191-2216</issn><isbn>1467357146</isbn><isbn>9781467357142</isbn><eisbn>9781467357173</eisbn><eisbn>1479913812</eisbn><eisbn>1467357170</eisbn><eisbn>9781479913817</eisbn><abstract>Separable Lyapunov functions play vital roles, for example, in stability analysis of large-scale systems. A Lyapunov function is called max-separable if it can be decomposed into a maximum of functions with one-dimensional arguments. Similarly, it is called sum-separable if it is a sum of such functions. In this paper it is shown that for a monotone system on a compact state space, asymptotic stability implies existence of a max-separable Lyapunov function. We also construct two systems on a non-compact state space, for which a max-separable Lyapunov function does not exist. One of them has a sum-separable Lyapunov function. The other does not.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2013.6760604</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 52nd IEEE Conference on Decision and Control, 2013, p.4590-4594 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_6760604 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Asymptotic stability Control Engineering Electrical Engineering, Electronic Engineering, Information Engineering Elektroteknik och elektronik Engineering and Technology Interconnected systems Large-scale systems Lyapunov functions Lyapunov methods monotone systems Reglerteknik stability Stability analysis Teknik Trajectory Vectors |
title | Separable Lyapunov functions for monotone systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Separable%20Lyapunov%20functions%20for%20monotone%20systems&rft.btitle=52nd%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Rantzer,%20Anders&rft.date=2013-12&rft.spage=4590&rft.epage=4594&rft.pages=4590-4594&rft.issn=0191-2216&rft.isbn=1467357146&rft.isbn_list=9781467357142&rft_id=info:doi/10.1109/CDC.2013.6760604&rft_dat=%3Cswepub_6IE%3Eoai_lup_lub_lu_se_115b002b_100b_40c5_abd8_d8cd71c3ad0e%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467357173&rft.eisbn_list=1479913812&rft.eisbn_list=1467357170&rft.eisbn_list=9781479913817&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6760604&rfr_iscdi=true |