On the optimal control of hybrid systems on Lie groups and the exponential gradient HMP algorithm

This paper provides a theory and associated algorithm for the optimization of autonomous and controlled hybrid systems on Lie groups. First, a geometrical derivation of the Hybrid Minimum Principle (HMP) for hybrid systems whose state manifolds constitute a Lie group (G, *) which is left invariant u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Taringoo, Farzin, Caines, Peter E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2658
container_issue
container_start_page 2653
container_title
container_volume
creator Taringoo, Farzin
Caines, Peter E.
description This paper provides a theory and associated algorithm for the optimization of autonomous and controlled hybrid systems on Lie groups. First, a geometrical derivation of the Hybrid Minimum Principle (HMP) for hybrid systems whose state manifolds constitute a Lie group (G, *) which is left invariant under the controlled dynamics of the system is presented. Second, a geometrical algorithm is developed by employing the notion of exponential curves on Lie groups. The convergence analysis for the proposed algorithm is based on Lasalle Theory. Simulation results are provided at the end of the paper.
doi_str_mv 10.1109/CDC.2013.6760283
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6760283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6760283</ieee_id><sourcerecordid>6760283</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5402af0f1219e43cfd8c90944e22ddb7b21225f72fe4d682fe9c96aa1fb778ae3</originalsourceid><addsrcrecordid>eNo1kD1PwzAYhI0AibZ0R2LxH0jxazt2PKLwUaSgMsBcObHdGqVxZBuJ_nsiKNPdDc9JdwjdAFkBEHVXP9QrSoCthBSEVuwMLZWsgAvJSgmSnaP5f-DiAs0IKCgoBXGF5il9EkIqIsQM6c2A897iMGZ_0D3uwpBj6HFweH9sozc4HVO2h4TDgBtv8S6GrzFhPZhfzn6PYbBD9hO7i9r4yeP16xvW_S5En_eHa3TpdJ_s8qQL9PH0-F6vi2bz_FLfN4UHWeai5IRqRxxQUJazzpmqU0Rxbik1ppUtBUpLJ6mz3IhqEtUpoTW4VspKW7ZAt3-93lq7HeM0Jx63p3vYD9mIV58</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the optimal control of hybrid systems on Lie groups and the exponential gradient HMP algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Taringoo, Farzin ; Caines, Peter E.</creator><creatorcontrib>Taringoo, Farzin ; Caines, Peter E.</creatorcontrib><description>This paper provides a theory and associated algorithm for the optimization of autonomous and controlled hybrid systems on Lie groups. First, a geometrical derivation of the Hybrid Minimum Principle (HMP) for hybrid systems whose state manifolds constitute a Lie group (G, *) which is left invariant under the controlled dynamics of the system is presented. Second, a geometrical algorithm is developed by employing the notion of exponential curves on Lie groups. The convergence analysis for the proposed algorithm is based on Lasalle Theory. Simulation results are provided at the end of the paper.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 1467357146</identifier><identifier>ISBN: 9781467357142</identifier><identifier>EISBN: 9781467357173</identifier><identifier>EISBN: 1479913812</identifier><identifier>EISBN: 1467357170</identifier><identifier>EISBN: 9781479913817</identifier><identifier>DOI: 10.1109/CDC.2013.6760283</identifier><language>eng</language><publisher>IEEE</publisher><subject>Manifolds ; Niobium ; Optimal control ; Switches ; Trajectory ; Vectors</subject><ispartof>52nd IEEE Conference on Decision and Control, 2013, p.2653-2658</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6760283$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6760283$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taringoo, Farzin</creatorcontrib><creatorcontrib>Caines, Peter E.</creatorcontrib><title>On the optimal control of hybrid systems on Lie groups and the exponential gradient HMP algorithm</title><title>52nd IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>This paper provides a theory and associated algorithm for the optimization of autonomous and controlled hybrid systems on Lie groups. First, a geometrical derivation of the Hybrid Minimum Principle (HMP) for hybrid systems whose state manifolds constitute a Lie group (G, *) which is left invariant under the controlled dynamics of the system is presented. Second, a geometrical algorithm is developed by employing the notion of exponential curves on Lie groups. The convergence analysis for the proposed algorithm is based on Lasalle Theory. Simulation results are provided at the end of the paper.</description><subject>Manifolds</subject><subject>Niobium</subject><subject>Optimal control</subject><subject>Switches</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>0191-2216</issn><isbn>1467357146</isbn><isbn>9781467357142</isbn><isbn>9781467357173</isbn><isbn>1479913812</isbn><isbn>1467357170</isbn><isbn>9781479913817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kD1PwzAYhI0AibZ0R2LxH0jxazt2PKLwUaSgMsBcObHdGqVxZBuJ_nsiKNPdDc9JdwjdAFkBEHVXP9QrSoCthBSEVuwMLZWsgAvJSgmSnaP5f-DiAs0IKCgoBXGF5il9EkIqIsQM6c2A897iMGZ_0D3uwpBj6HFweH9sozc4HVO2h4TDgBtv8S6GrzFhPZhfzn6PYbBD9hO7i9r4yeP16xvW_S5En_eHa3TpdJ_s8qQL9PH0-F6vi2bz_FLfN4UHWeai5IRqRxxQUJazzpmqU0Rxbik1ppUtBUpLJ6mz3IhqEtUpoTW4VspKW7ZAt3-93lq7HeM0Jx63p3vYD9mIV58</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Taringoo, Farzin</creator><creator>Caines, Peter E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201312</creationdate><title>On the optimal control of hybrid systems on Lie groups and the exponential gradient HMP algorithm</title><author>Taringoo, Farzin ; Caines, Peter E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5402af0f1219e43cfd8c90944e22ddb7b21225f72fe4d682fe9c96aa1fb778ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Manifolds</topic><topic>Niobium</topic><topic>Optimal control</topic><topic>Switches</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Taringoo, Farzin</creatorcontrib><creatorcontrib>Caines, Peter E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taringoo, Farzin</au><au>Caines, Peter E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the optimal control of hybrid systems on Lie groups and the exponential gradient HMP algorithm</atitle><btitle>52nd IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2013-12</date><risdate>2013</risdate><spage>2653</spage><epage>2658</epage><pages>2653-2658</pages><issn>0191-2216</issn><isbn>1467357146</isbn><isbn>9781467357142</isbn><eisbn>9781467357173</eisbn><eisbn>1479913812</eisbn><eisbn>1467357170</eisbn><eisbn>9781479913817</eisbn><abstract>This paper provides a theory and associated algorithm for the optimization of autonomous and controlled hybrid systems on Lie groups. First, a geometrical derivation of the Hybrid Minimum Principle (HMP) for hybrid systems whose state manifolds constitute a Lie group (G, *) which is left invariant under the controlled dynamics of the system is presented. Second, a geometrical algorithm is developed by employing the notion of exponential curves on Lie groups. The convergence analysis for the proposed algorithm is based on Lasalle Theory. Simulation results are provided at the end of the paper.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2013.6760283</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 52nd IEEE Conference on Decision and Control, 2013, p.2653-2658
issn 0191-2216
language eng
recordid cdi_ieee_primary_6760283
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Manifolds
Niobium
Optimal control
Switches
Trajectory
Vectors
title On the optimal control of hybrid systems on Lie groups and the exponential gradient HMP algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20optimal%20control%20of%20hybrid%20systems%20on%20Lie%20groups%20and%20the%20exponential%20gradient%20HMP%20algorithm&rft.btitle=52nd%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Taringoo,%20Farzin&rft.date=2013-12&rft.spage=2653&rft.epage=2658&rft.pages=2653-2658&rft.issn=0191-2216&rft.isbn=1467357146&rft.isbn_list=9781467357142&rft_id=info:doi/10.1109/CDC.2013.6760283&rft_dat=%3Cieee_6IE%3E6760283%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467357173&rft.eisbn_list=1479913812&rft.eisbn_list=1467357170&rft.eisbn_list=9781479913817&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6760283&rfr_iscdi=true