30.7 A 60Mb/s wideband BCC transceiver with 150pJ/b RX and 31pJ/b TX for emerging wearable applications

Wearable technology is opening the door to future wellness and mobile experience. Following the first generation wearable devices in the form of headsets, shoes and fitness monitors, second generation devices such as smart glasses and watches are making an entrance to the market with a great potenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Junghyup Lee, Kulkarni, Vishal Vinayak, Chee Keong Ho, Jia Hao Cheong, Peng Li, Jun Zhou, Wei Da Toh, Xin Zhang, Yuan Gao, Kuang Wei Cheng, Xin Liu, Minkyu Je
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue
container_start_page 498
container_title
container_volume
creator Junghyup Lee
Kulkarni, Vishal Vinayak
Chee Keong Ho
Jia Hao Cheong
Peng Li
Jun Zhou
Wei Da Toh
Xin Zhang
Yuan Gao
Kuang Wei Cheng
Xin Liu
Minkyu Je
description Wearable technology is opening the door to future wellness and mobile experience. Following the first generation wearable devices in the form of headsets, shoes and fitness monitors, second generation devices such as smart glasses and watches are making an entrance to the market with a great potential to eventually replace the current mobile device platform eventually (Fig. 30.7.1). Wearable devices can be carried by users in a most natural way and provide all-round connectivity 24-7 without the hassle of stopping all other activities, which enables a totally different mobile experience. For wearable devices, body channel communication (BCC) is an excellent alternative of conventional wireless communication through the air, to obviate the need of high-power transceivers and bulky antennas. However, present BCC transceivers [1]-[5] that mainly target biomedical and sensing applications offer rather limited data rates up to 10Mb/s, which is insufficient in transferring multimedia data for emerging wearable smart devices and content-rich information for high-end medical devices (e.g. multi-channel neural recording microsystems). In this paper, a highly energy-efficient and robust wideband BCC transceiver is presented, which achieves a maximum data rate of 60Mb/s by employing 1) a high input impedance and an equalizer at the RX front-end, 2) transient-detection RX architecture using differentiator-integrator combination coupled with injection-locking-based clock recovery, and 3) 3-level direct digital Walsh-coded signaling at the TX.
doi_str_mv 10.1109/ISSCC.2014.6757529
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6757529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6757529</ieee_id><sourcerecordid>6757529</sourcerecordid><originalsourceid>FETCH-ieee_primary_67575293</originalsourceid><addsrcrecordid>eNp9z81OwzAQBODlTyKFvgBc9gWSrOPGjo9ggaBSL7SH3iqn3QajNI3siIq350c5cxqNvrkMwJ2gTAgy-etyaW1WkJhlSpe6LMwZTI2uxEwbQ6Ygcw5JIbVKK0XqAiYjiEpcQkLCyFSVkq5hEuMHEZVGVQk0kjKND6hoUecRT37Htet2-GgtDsF1ccv-k8MPDO8oSurneY1va_zdSPHXVmvcHwPygUPjuwZP7IKrW0bX963fusEfu3gLV3vXRp6OeQP3z08r-5J6Zt70wR9c-NqMx-T_-g1eCklL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>30.7 A 60Mb/s wideband BCC transceiver with 150pJ/b RX and 31pJ/b TX for emerging wearable applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Junghyup Lee ; Kulkarni, Vishal Vinayak ; Chee Keong Ho ; Jia Hao Cheong ; Peng Li ; Jun Zhou ; Wei Da Toh ; Xin Zhang ; Yuan Gao ; Kuang Wei Cheng ; Xin Liu ; Minkyu Je</creator><creatorcontrib>Junghyup Lee ; Kulkarni, Vishal Vinayak ; Chee Keong Ho ; Jia Hao Cheong ; Peng Li ; Jun Zhou ; Wei Da Toh ; Xin Zhang ; Yuan Gao ; Kuang Wei Cheng ; Xin Liu ; Minkyu Je</creatorcontrib><description>Wearable technology is opening the door to future wellness and mobile experience. Following the first generation wearable devices in the form of headsets, shoes and fitness monitors, second generation devices such as smart glasses and watches are making an entrance to the market with a great potential to eventually replace the current mobile device platform eventually (Fig. 30.7.1). Wearable devices can be carried by users in a most natural way and provide all-round connectivity 24-7 without the hassle of stopping all other activities, which enables a totally different mobile experience. For wearable devices, body channel communication (BCC) is an excellent alternative of conventional wireless communication through the air, to obviate the need of high-power transceivers and bulky antennas. However, present BCC transceivers [1]-[5] that mainly target biomedical and sensing applications offer rather limited data rates up to 10Mb/s, which is insufficient in transferring multimedia data for emerging wearable smart devices and content-rich information for high-end medical devices (e.g. multi-channel neural recording microsystems). In this paper, a highly energy-efficient and robust wideband BCC transceiver is presented, which achieves a maximum data rate of 60Mb/s by employing 1) a high input impedance and an equalizer at the RX front-end, 2) transient-detection RX architecture using differentiator-integrator combination coupled with injection-locking-based clock recovery, and 3) 3-level direct digital Walsh-coded signaling at the TX.</description><identifier>ISSN: 0193-6530</identifier><identifier>ISBN: 1479909181</identifier><identifier>ISBN: 9781479909186</identifier><identifier>EISSN: 2376-8606</identifier><identifier>EISBN: 9781479909209</identifier><identifier>EISBN: 1479909203</identifier><identifier>DOI: 10.1109/ISSCC.2014.6757529</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical monitoring ; Clocks ; Equalizers ; Impedance ; Solid state circuits ; Transceivers ; Wideband</subject><ispartof>2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, p.498-499</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6757529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6757529$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Junghyup Lee</creatorcontrib><creatorcontrib>Kulkarni, Vishal Vinayak</creatorcontrib><creatorcontrib>Chee Keong Ho</creatorcontrib><creatorcontrib>Jia Hao Cheong</creatorcontrib><creatorcontrib>Peng Li</creatorcontrib><creatorcontrib>Jun Zhou</creatorcontrib><creatorcontrib>Wei Da Toh</creatorcontrib><creatorcontrib>Xin Zhang</creatorcontrib><creatorcontrib>Yuan Gao</creatorcontrib><creatorcontrib>Kuang Wei Cheng</creatorcontrib><creatorcontrib>Xin Liu</creatorcontrib><creatorcontrib>Minkyu Je</creatorcontrib><title>30.7 A 60Mb/s wideband BCC transceiver with 150pJ/b RX and 31pJ/b TX for emerging wearable applications</title><title>2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)</title><addtitle>ISSCC</addtitle><description>Wearable technology is opening the door to future wellness and mobile experience. Following the first generation wearable devices in the form of headsets, shoes and fitness monitors, second generation devices such as smart glasses and watches are making an entrance to the market with a great potential to eventually replace the current mobile device platform eventually (Fig. 30.7.1). Wearable devices can be carried by users in a most natural way and provide all-round connectivity 24-7 without the hassle of stopping all other activities, which enables a totally different mobile experience. For wearable devices, body channel communication (BCC) is an excellent alternative of conventional wireless communication through the air, to obviate the need of high-power transceivers and bulky antennas. However, present BCC transceivers [1]-[5] that mainly target biomedical and sensing applications offer rather limited data rates up to 10Mb/s, which is insufficient in transferring multimedia data for emerging wearable smart devices and content-rich information for high-end medical devices (e.g. multi-channel neural recording microsystems). In this paper, a highly energy-efficient and robust wideband BCC transceiver is presented, which achieves a maximum data rate of 60Mb/s by employing 1) a high input impedance and an equalizer at the RX front-end, 2) transient-detection RX architecture using differentiator-integrator combination coupled with injection-locking-based clock recovery, and 3) 3-level direct digital Walsh-coded signaling at the TX.</description><subject>Biomedical monitoring</subject><subject>Clocks</subject><subject>Equalizers</subject><subject>Impedance</subject><subject>Solid state circuits</subject><subject>Transceivers</subject><subject>Wideband</subject><issn>0193-6530</issn><issn>2376-8606</issn><isbn>1479909181</isbn><isbn>9781479909186</isbn><isbn>9781479909209</isbn><isbn>1479909203</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9z81OwzAQBODlTyKFvgBc9gWSrOPGjo9ggaBSL7SH3iqn3QajNI3siIq350c5cxqNvrkMwJ2gTAgy-etyaW1WkJhlSpe6LMwZTI2uxEwbQ6Ygcw5JIbVKK0XqAiYjiEpcQkLCyFSVkq5hEuMHEZVGVQk0kjKND6hoUecRT37Htet2-GgtDsF1ccv-k8MPDO8oSurneY1va_zdSPHXVmvcHwPygUPjuwZP7IKrW0bX963fusEfu3gLV3vXRp6OeQP3z08r-5J6Zt70wR9c-NqMx-T_-g1eCklL</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Junghyup Lee</creator><creator>Kulkarni, Vishal Vinayak</creator><creator>Chee Keong Ho</creator><creator>Jia Hao Cheong</creator><creator>Peng Li</creator><creator>Jun Zhou</creator><creator>Wei Da Toh</creator><creator>Xin Zhang</creator><creator>Yuan Gao</creator><creator>Kuang Wei Cheng</creator><creator>Xin Liu</creator><creator>Minkyu Je</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201402</creationdate><title>30.7 A 60Mb/s wideband BCC transceiver with 150pJ/b RX and 31pJ/b TX for emerging wearable applications</title><author>Junghyup Lee ; Kulkarni, Vishal Vinayak ; Chee Keong Ho ; Jia Hao Cheong ; Peng Li ; Jun Zhou ; Wei Da Toh ; Xin Zhang ; Yuan Gao ; Kuang Wei Cheng ; Xin Liu ; Minkyu Je</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_67575293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biomedical monitoring</topic><topic>Clocks</topic><topic>Equalizers</topic><topic>Impedance</topic><topic>Solid state circuits</topic><topic>Transceivers</topic><topic>Wideband</topic><toplevel>online_resources</toplevel><creatorcontrib>Junghyup Lee</creatorcontrib><creatorcontrib>Kulkarni, Vishal Vinayak</creatorcontrib><creatorcontrib>Chee Keong Ho</creatorcontrib><creatorcontrib>Jia Hao Cheong</creatorcontrib><creatorcontrib>Peng Li</creatorcontrib><creatorcontrib>Jun Zhou</creatorcontrib><creatorcontrib>Wei Da Toh</creatorcontrib><creatorcontrib>Xin Zhang</creatorcontrib><creatorcontrib>Yuan Gao</creatorcontrib><creatorcontrib>Kuang Wei Cheng</creatorcontrib><creatorcontrib>Xin Liu</creatorcontrib><creatorcontrib>Minkyu Je</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Junghyup Lee</au><au>Kulkarni, Vishal Vinayak</au><au>Chee Keong Ho</au><au>Jia Hao Cheong</au><au>Peng Li</au><au>Jun Zhou</au><au>Wei Da Toh</au><au>Xin Zhang</au><au>Yuan Gao</au><au>Kuang Wei Cheng</au><au>Xin Liu</au><au>Minkyu Je</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>30.7 A 60Mb/s wideband BCC transceiver with 150pJ/b RX and 31pJ/b TX for emerging wearable applications</atitle><btitle>2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)</btitle><stitle>ISSCC</stitle><date>2014-02</date><risdate>2014</risdate><spage>498</spage><epage>499</epage><pages>498-499</pages><issn>0193-6530</issn><eissn>2376-8606</eissn><isbn>1479909181</isbn><isbn>9781479909186</isbn><eisbn>9781479909209</eisbn><eisbn>1479909203</eisbn><abstract>Wearable technology is opening the door to future wellness and mobile experience. Following the first generation wearable devices in the form of headsets, shoes and fitness monitors, second generation devices such as smart glasses and watches are making an entrance to the market with a great potential to eventually replace the current mobile device platform eventually (Fig. 30.7.1). Wearable devices can be carried by users in a most natural way and provide all-round connectivity 24-7 without the hassle of stopping all other activities, which enables a totally different mobile experience. For wearable devices, body channel communication (BCC) is an excellent alternative of conventional wireless communication through the air, to obviate the need of high-power transceivers and bulky antennas. However, present BCC transceivers [1]-[5] that mainly target biomedical and sensing applications offer rather limited data rates up to 10Mb/s, which is insufficient in transferring multimedia data for emerging wearable smart devices and content-rich information for high-end medical devices (e.g. multi-channel neural recording microsystems). In this paper, a highly energy-efficient and robust wideband BCC transceiver is presented, which achieves a maximum data rate of 60Mb/s by employing 1) a high input impedance and an equalizer at the RX front-end, 2) transient-detection RX architecture using differentiator-integrator combination coupled with injection-locking-based clock recovery, and 3) 3-level direct digital Walsh-coded signaling at the TX.</abstract><pub>IEEE</pub><doi>10.1109/ISSCC.2014.6757529</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0193-6530
ispartof 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, p.498-499
issn 0193-6530
2376-8606
language eng
recordid cdi_ieee_primary_6757529
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical monitoring
Clocks
Equalizers
Impedance
Solid state circuits
Transceivers
Wideband
title 30.7 A 60Mb/s wideband BCC transceiver with 150pJ/b RX and 31pJ/b TX for emerging wearable applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=30.7%20A%2060Mb/s%20wideband%20BCC%20transceiver%20with%20150pJ/b%20RX%20and%2031pJ/b%20TX%20for%20emerging%20wearable%20applications&rft.btitle=2014%20IEEE%20International%20Solid-State%20Circuits%20Conference%20Digest%20of%20Technical%20Papers%20(ISSCC)&rft.au=Junghyup%20Lee&rft.date=2014-02&rft.spage=498&rft.epage=499&rft.pages=498-499&rft.issn=0193-6530&rft.eissn=2376-8606&rft.isbn=1479909181&rft.isbn_list=9781479909186&rft_id=info:doi/10.1109/ISSCC.2014.6757529&rft_dat=%3Cieee_6IE%3E6757529%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479909209&rft.eisbn_list=1479909203&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6757529&rfr_iscdi=true