3D Assisted Face Recognition: Dealing With Expression Variations
One of the most critical sources of variation in face recognition is facial expressions, especially in the frequent case where only a single sample per person is available for enrollment. Methods that improve the accuracy in the presence of such variations are still required for a reliable authentic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2014-05, Vol.9 (5), p.826-838 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 838 |
---|---|
container_issue | 5 |
container_start_page | 826 |
container_title | IEEE transactions on information forensics and security |
container_volume | 9 |
creator | Erdogmus, Nesli Dugelay, Jean-Luc |
description | One of the most critical sources of variation in face recognition is facial expressions, especially in the frequent case where only a single sample per person is available for enrollment. Methods that improve the accuracy in the presence of such variations are still required for a reliable authentication system. In this paper, we address this problem with an analysis-by-synthesis-based scheme, in which a number of synthetic face images with different expressions are produced. For this purpose, an animatable 3D model is generated for each user based on 17 automatically located landmark points. The contribution of these additional images in terms of the recognition performance is evaluated with three different techniques (principal component analysis, linear discriminant analysis, and local binary patterns) on face recognition grand challenge and Bosphorus 3D face databases. Significant improvements are achieved in face recognition accuracies, for each database and algorithm. |
doi_str_mv | 10.1109/TIFS.2014.2309851 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6757036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6757036</ieee_id><sourcerecordid>1559666464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e1c5e6a273f7a0242f76574497991aebed5fdf206e1c106f4c793581d27fbd553</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbqDxAvCyJ42ZrvbDxZ-qGFgqBVj0uandSUdbcmW9B_7y4tPXjKQJ6ZSV6ELgkeEIL13WI2fR1QTPiAMqwzQY5QjwghU4kpOT7UhJ2isxjXGHNOZNZDD2ycDGP0sYEimRoLyQvYelX5xtfVfTIGU_pqlXz45jOZ_GwCtLaukncTvOlIPEcnzpQRLvZnH71NJ4vRUzp_fpyNhvPUMiGbFIgVIA1VzCmDKadOSaE410prYmAJhXCFo1i2kGDpuFWaiYwUVLllIQTro9vd3E2ov7cQm_zLRwtlaSqotzFvP6illFzyll7_o-t6G6r2da3ignEpmG4V2Skb6hgDuHwT_JcJvznBeZdp3mWad5nm-0zbnpv9ZBOtKV0wlfXx0EgzwbJuQx9d7ZwHgMO1VEJhJtkfpQx9SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545346539</pqid></control><display><type>article</type><title>3D Assisted Face Recognition: Dealing With Expression Variations</title><source>IEEE Electronic Library (IEL)</source><creator>Erdogmus, Nesli ; Dugelay, Jean-Luc</creator><creatorcontrib>Erdogmus, Nesli ; Dugelay, Jean-Luc</creatorcontrib><description>One of the most critical sources of variation in face recognition is facial expressions, especially in the frequent case where only a single sample per person is available for enrollment. Methods that improve the accuracy in the presence of such variations are still required for a reliable authentication system. In this paper, we address this problem with an analysis-by-synthesis-based scheme, in which a number of synthetic face images with different expressions are produced. For this purpose, an animatable 3D model is generated for each user based on 17 automatically located landmark points. The contribution of these additional images in terms of the recognition performance is evaluated with three different techniques (principal component analysis, linear discriminant analysis, and local binary patterns) on face recognition grand challenge and Bosphorus 3D face databases. Significant improvements are achieved in face recognition accuracies, for each database and algorithm.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2014.2309851</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied sciences ; Artificial intelligence ; Biometrics ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data processing. List processing. Character string processing ; Discriminant analysis ; Exact sciences and technology ; Face ; Face recognition ; Lighting ; Memory organisation. Data processing ; Nose ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Shape ; Software ; Solid modeling ; Three dimensional ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE transactions on information forensics and security, 2014-05, Vol.9 (5), p.826-838</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e1c5e6a273f7a0242f76574497991aebed5fdf206e1c106f4c793581d27fbd553</citedby><cites>FETCH-LOGICAL-c356t-e1c5e6a273f7a0242f76574497991aebed5fdf206e1c106f4c793581d27fbd553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6757036$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6757036$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28538545$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Erdogmus, Nesli</creatorcontrib><creatorcontrib>Dugelay, Jean-Luc</creatorcontrib><title>3D Assisted Face Recognition: Dealing With Expression Variations</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>One of the most critical sources of variation in face recognition is facial expressions, especially in the frequent case where only a single sample per person is available for enrollment. Methods that improve the accuracy in the presence of such variations are still required for a reliable authentication system. In this paper, we address this problem with an analysis-by-synthesis-based scheme, in which a number of synthetic face images with different expressions are produced. For this purpose, an animatable 3D model is generated for each user based on 17 automatically located landmark points. The contribution of these additional images in terms of the recognition performance is evaluated with three different techniques (principal component analysis, linear discriminant analysis, and local binary patterns) on face recognition grand challenge and Bosphorus 3D face databases. Significant improvements are achieved in face recognition accuracies, for each database and algorithm.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biometrics</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data processing. List processing. Character string processing</subject><subject>Discriminant analysis</subject><subject>Exact sciences and technology</subject><subject>Face</subject><subject>Face recognition</subject><subject>Lighting</subject><subject>Memory organisation. Data processing</subject><subject>Nose</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Shape</subject><subject>Software</subject><subject>Solid modeling</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1LAzEQBuAgCtbqDxAvCyJ42ZrvbDxZ-qGFgqBVj0uandSUdbcmW9B_7y4tPXjKQJ6ZSV6ELgkeEIL13WI2fR1QTPiAMqwzQY5QjwghU4kpOT7UhJ2isxjXGHNOZNZDD2ycDGP0sYEimRoLyQvYelX5xtfVfTIGU_pqlXz45jOZ_GwCtLaukncTvOlIPEcnzpQRLvZnH71NJ4vRUzp_fpyNhvPUMiGbFIgVIA1VzCmDKadOSaE410prYmAJhXCFo1i2kGDpuFWaiYwUVLllIQTro9vd3E2ov7cQm_zLRwtlaSqotzFvP6illFzyll7_o-t6G6r2da3ignEpmG4V2Skb6hgDuHwT_JcJvznBeZdp3mWad5nm-0zbnpv9ZBOtKV0wlfXx0EgzwbJuQx9d7ZwHgMO1VEJhJtkfpQx9SA</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Erdogmus, Nesli</creator><creator>Dugelay, Jean-Luc</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20140501</creationdate><title>3D Assisted Face Recognition: Dealing With Expression Variations</title><author>Erdogmus, Nesli ; Dugelay, Jean-Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e1c5e6a273f7a0242f76574497991aebed5fdf206e1c106f4c793581d27fbd553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biometrics</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data processing. List processing. Character string processing</topic><topic>Discriminant analysis</topic><topic>Exact sciences and technology</topic><topic>Face</topic><topic>Face recognition</topic><topic>Lighting</topic><topic>Memory organisation. Data processing</topic><topic>Nose</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Shape</topic><topic>Software</topic><topic>Solid modeling</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdogmus, Nesli</creatorcontrib><creatorcontrib>Dugelay, Jean-Luc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erdogmus, Nesli</au><au>Dugelay, Jean-Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Assisted Face Recognition: Dealing With Expression Variations</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>9</volume><issue>5</issue><spage>826</spage><epage>838</epage><pages>826-838</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>One of the most critical sources of variation in face recognition is facial expressions, especially in the frequent case where only a single sample per person is available for enrollment. Methods that improve the accuracy in the presence of such variations are still required for a reliable authentication system. In this paper, we address this problem with an analysis-by-synthesis-based scheme, in which a number of synthetic face images with different expressions are produced. For this purpose, an animatable 3D model is generated for each user based on 17 automatically located landmark points. The contribution of these additional images in terms of the recognition performance is evaluated with three different techniques (principal component analysis, linear discriminant analysis, and local binary patterns) on face recognition grand challenge and Bosphorus 3D face databases. Significant improvements are achieved in face recognition accuracies, for each database and algorithm.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIFS.2014.2309851</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2014-05, Vol.9 (5), p.826-838 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_ieee_primary_6757036 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Applied sciences Artificial intelligence Biometrics Computer science control theory systems Computer systems and distributed systems. User interface Data processing. List processing. Character string processing Discriminant analysis Exact sciences and technology Face Face recognition Lighting Memory organisation. Data processing Nose Pattern recognition Pattern recognition. Digital image processing. Computational geometry Shape Software Solid modeling Three dimensional Three dimensional models Three-dimensional displays |
title | 3D Assisted Face Recognition: Dealing With Expression Variations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Assisted%20Face%20Recognition:%20Dealing%20With%20Expression%20Variations&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Erdogmus,%20Nesli&rft.date=2014-05-01&rft.volume=9&rft.issue=5&rft.spage=826&rft.epage=838&rft.pages=826-838&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2014.2309851&rft_dat=%3Cproquest_RIE%3E1559666464%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545346539&rft_id=info:pmid/&rft_ieee_id=6757036&rfr_iscdi=true |