Hidden Markov modelling for SAR automatic target recognition

This paper discusses the application of hidden Markov models (HMMs) to solve the translational and rotational invariant automatic target recognition (TRIATR) problem associated with SAR imagery. This approach is based on a cascade of these stages: preprocessing, feature extraction and selection, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nilubol, C., Pham, Q.H., Mersereau, R.M., Smith, M.J.T., Clements, M.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1064 vol.2
container_issue
container_start_page 1061
container_title
container_volume 2
creator Nilubol, C.
Pham, Q.H.
Mersereau, R.M.
Smith, M.J.T.
Clements, M.A.
description This paper discusses the application of hidden Markov models (HMMs) to solve the translational and rotational invariant automatic target recognition (TRIATR) problem associated with SAR imagery. This approach is based on a cascade of these stages: preprocessing, feature extraction and selection, and classification. Preprocessing and feature extraction and selection involve successive applications of extraction operations from measurements of the Radon transform of target chips. The features which are invariant to changes in rotation, position and shifts, although not to changes in scale are optimized through the use of feature selection techniques. The classification stage successively takes as its inputs the multidimensional multiple observation sequences, parameterizes them statistically using continuous density models to capture target and background appearance variability, and thus results in the TRIATR-HMMs. Experimental results have demonstrated that the recognition rate is as high as 99% over both the training set and the testing set.
doi_str_mv 10.1109/ICASSP.1998.675451
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_675451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>675451</ieee_id><sourcerecordid>675451</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-8ff20df6f7c142a3661ce6fd80764899becc6b2dd8002eb57fa710e6c1e00ced3</originalsourceid><addsrcrecordid>eNotj91Kw0AUhBd_wFD7Ar3aF0g8Z7M_WfCmFLVCRTEK3pXt7tmy2iSSRMG3b6AOAwNzMXzD2AKhQAR787ha1vVLgdZWhTZKKjxjmSiNzdHCxzmbW1PB5FJKUcEFy1AJyDVKe8Xmw_AJk6RSYFTGbtcpBGr5k-u_ul_edIEOh9Tueex6Xi9fufsZu8aNyfPR9XsaeU--27dpTF17zS6jOww0_88Ze7-_e1ut883zwwS5yRMaOeZVjAJC1NF4lMKVWqMnHcMEqWVl7Y681zsRpgIE7ZSJziCQ9kgAnkI5Y4vTbiKi7XefGtf_bU_XyyOM30t8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hidden Markov modelling for SAR automatic target recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nilubol, C. ; Pham, Q.H. ; Mersereau, R.M. ; Smith, M.J.T. ; Clements, M.A.</creator><creatorcontrib>Nilubol, C. ; Pham, Q.H. ; Mersereau, R.M. ; Smith, M.J.T. ; Clements, M.A.</creatorcontrib><description>This paper discusses the application of hidden Markov models (HMMs) to solve the translational and rotational invariant automatic target recognition (TRIATR) problem associated with SAR imagery. This approach is based on a cascade of these stages: preprocessing, feature extraction and selection, and classification. Preprocessing and feature extraction and selection involve successive applications of extraction operations from measurements of the Radon transform of target chips. The features which are invariant to changes in rotation, position and shifts, although not to changes in scale are optimized through the use of feature selection techniques. The classification stage successively takes as its inputs the multidimensional multiple observation sequences, parameterizes them statistically using continuous density models to capture target and background appearance variability, and thus results in the TRIATR-HMMs. Experimental results have demonstrated that the recognition rate is as high as 99% over both the training set and the testing set.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780344280</identifier><identifier>ISBN: 0780344286</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1998.675451</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Discrete Fourier transforms ; Feature extraction ; Hidden Markov models ; Image processing ; Multidimensional systems ; Semiconductor device measurement ; Signal processing ; Speech recognition ; Target recognition</subject><ispartof>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1998, Vol.2, p.1061-1064 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/675451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/675451$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nilubol, C.</creatorcontrib><creatorcontrib>Pham, Q.H.</creatorcontrib><creatorcontrib>Mersereau, R.M.</creatorcontrib><creatorcontrib>Smith, M.J.T.</creatorcontrib><creatorcontrib>Clements, M.A.</creatorcontrib><title>Hidden Markov modelling for SAR automatic target recognition</title><title>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181)</title><addtitle>ICASSP</addtitle><description>This paper discusses the application of hidden Markov models (HMMs) to solve the translational and rotational invariant automatic target recognition (TRIATR) problem associated with SAR imagery. This approach is based on a cascade of these stages: preprocessing, feature extraction and selection, and classification. Preprocessing and feature extraction and selection involve successive applications of extraction operations from measurements of the Radon transform of target chips. The features which are invariant to changes in rotation, position and shifts, although not to changes in scale are optimized through the use of feature selection techniques. The classification stage successively takes as its inputs the multidimensional multiple observation sequences, parameterizes them statistically using continuous density models to capture target and background appearance variability, and thus results in the TRIATR-HMMs. Experimental results have demonstrated that the recognition rate is as high as 99% over both the training set and the testing set.</description><subject>Application software</subject><subject>Discrete Fourier transforms</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Image processing</subject><subject>Multidimensional systems</subject><subject>Semiconductor device measurement</subject><subject>Signal processing</subject><subject>Speech recognition</subject><subject>Target recognition</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780344280</isbn><isbn>0780344286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj91Kw0AUhBd_wFD7Ar3aF0g8Z7M_WfCmFLVCRTEK3pXt7tmy2iSSRMG3b6AOAwNzMXzD2AKhQAR787ha1vVLgdZWhTZKKjxjmSiNzdHCxzmbW1PB5FJKUcEFy1AJyDVKe8Xmw_AJk6RSYFTGbtcpBGr5k-u_ul_edIEOh9Tueex6Xi9fufsZu8aNyfPR9XsaeU--27dpTF17zS6jOww0_88Ze7-_e1ut883zwwS5yRMaOeZVjAJC1NF4lMKVWqMnHcMEqWVl7Y681zsRpgIE7ZSJziCQ9kgAnkI5Y4vTbiKi7XefGtf_bU_XyyOM30t8</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Nilubol, C.</creator><creator>Pham, Q.H.</creator><creator>Mersereau, R.M.</creator><creator>Smith, M.J.T.</creator><creator>Clements, M.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Hidden Markov modelling for SAR automatic target recognition</title><author>Nilubol, C. ; Pham, Q.H. ; Mersereau, R.M. ; Smith, M.J.T. ; Clements, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-8ff20df6f7c142a3661ce6fd80764899becc6b2dd8002eb57fa710e6c1e00ced3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Application software</topic><topic>Discrete Fourier transforms</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Image processing</topic><topic>Multidimensional systems</topic><topic>Semiconductor device measurement</topic><topic>Signal processing</topic><topic>Speech recognition</topic><topic>Target recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Nilubol, C.</creatorcontrib><creatorcontrib>Pham, Q.H.</creatorcontrib><creatorcontrib>Mersereau, R.M.</creatorcontrib><creatorcontrib>Smith, M.J.T.</creatorcontrib><creatorcontrib>Clements, M.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nilubol, C.</au><au>Pham, Q.H.</au><au>Mersereau, R.M.</au><au>Smith, M.J.T.</au><au>Clements, M.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hidden Markov modelling for SAR automatic target recognition</atitle><btitle>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181)</btitle><stitle>ICASSP</stitle><date>1998</date><risdate>1998</risdate><volume>2</volume><spage>1061</spage><epage>1064 vol.2</epage><pages>1061-1064 vol.2</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780344280</isbn><isbn>0780344286</isbn><abstract>This paper discusses the application of hidden Markov models (HMMs) to solve the translational and rotational invariant automatic target recognition (TRIATR) problem associated with SAR imagery. This approach is based on a cascade of these stages: preprocessing, feature extraction and selection, and classification. Preprocessing and feature extraction and selection involve successive applications of extraction operations from measurements of the Radon transform of target chips. The features which are invariant to changes in rotation, position and shifts, although not to changes in scale are optimized through the use of feature selection techniques. The classification stage successively takes as its inputs the multidimensional multiple observation sequences, parameterizes them statistically using continuous density models to capture target and background appearance variability, and thus results in the TRIATR-HMMs. Experimental results have demonstrated that the recognition rate is as high as 99% over both the training set and the testing set.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1998.675451</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1998, Vol.2, p.1061-1064 vol.2
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_675451
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Discrete Fourier transforms
Feature extraction
Hidden Markov models
Image processing
Multidimensional systems
Semiconductor device measurement
Signal processing
Speech recognition
Target recognition
title Hidden Markov modelling for SAR automatic target recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hidden%20Markov%20modelling%20for%20SAR%20automatic%20target%20recognition&rft.btitle=Proceedings%20of%20the%201998%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing,%20ICASSP%20'98%20(Cat.%20No.98CH36181)&rft.au=Nilubol,%20C.&rft.date=1998&rft.volume=2&rft.spage=1061&rft.epage=1064%20vol.2&rft.pages=1061-1064%20vol.2&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780344280&rft.isbn_list=0780344286&rft_id=info:doi/10.1109/ICASSP.1998.675451&rft_dat=%3Cieee_6IE%3E675451%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=675451&rfr_iscdi=true