Efficient search with posterior probability estimates in HMM-based speech recognition

In this paper we present the methods we developed to estimate posterior probabilities for HMM states in continuous and discrete HMM-based speech recognition systems and several ways to speed up decoding by using these posterior probability estimates. The proposed pruning techniques are state deactiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Willett, D., Neukirchen, C., Rigoll, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 824 vol.2
container_issue
container_start_page 821
container_title
container_volume 2
creator Willett, D.
Neukirchen, C.
Rigoll, G.
description In this paper we present the methods we developed to estimate posterior probabilities for HMM states in continuous and discrete HMM-based speech recognition systems and several ways to speed up decoding by using these posterior probability estimates. The proposed pruning techniques are state deactivation pruning (SDP), similar to an approach proposed for hybrid recognition systems, and a novel posteriori-based lookahead technique, posteriori lookahead pruning (PLP), that evaluates future posteriors in order to exclude unlikely HMM states as early as possible during search. By applying the proposed methods we managed to vastly reduce the decoding time consumed by our time-synchronous Viterbi-decoder for recognition systems based on the Verbmobil and the Wall Street Journal database with hardly any additional search error.
doi_str_mv 10.1109/ICASSP.1998.675391
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_675391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>675391</ieee_id><sourcerecordid>675391</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-575d6b63fbb9247b18c4f9310d4ee4390b2be967efc1b6b0d82e5ff9a943d74c3</originalsourceid><addsrcrecordid>eNotkE1qwzAUhEV_oCb1BbLSBZxKlmT5LUtIm0JCC2mguyDJT41KahtJUHL7GpJhYFYzfAwhc84WnDN4els-73YfCw7QLhqtBPAbUtRCQ8WBfd2SEnTLJgsp65bdkYKrmlUNl_BAypR-2CSpFNOqIPuV98EF7DNNaKI70r-Qj3QcUsYYhkjHOFhjwynkM8WUw6_JmGjo6Xq7raxJ2NE0Ik7FiG747kMOQ_9I7r05JSyvOSP7l9Xncl1t3l8n-k0VuJa5Ulp1jW2EtxZqqS1vnfQgOOskohTAbG0RGo3ecdtY1rU1Ku_BgBSdlk7MyPyyGxDxMMaJLp4Pl0_EP_7mVQ8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient search with posterior probability estimates in HMM-based speech recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Willett, D. ; Neukirchen, C. ; Rigoll, G.</creator><creatorcontrib>Willett, D. ; Neukirchen, C. ; Rigoll, G.</creatorcontrib><description>In this paper we present the methods we developed to estimate posterior probabilities for HMM states in continuous and discrete HMM-based speech recognition systems and several ways to speed up decoding by using these posterior probability estimates. The proposed pruning techniques are state deactivation pruning (SDP), similar to an approach proposed for hybrid recognition systems, and a novel posteriori-based lookahead technique, posteriori lookahead pruning (PLP), that evaluates future posteriors in order to exclude unlikely HMM states as early as possible during search. By applying the proposed methods we managed to vastly reduce the decoding time consumed by our time-synchronous Viterbi-decoder for recognition systems based on the Verbmobil and the Wall Street Journal database with hardly any additional search error.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780344280</identifier><identifier>ISBN: 0780344286</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1998.675391</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Context modeling ; Decoding ; Distribution functions ; Hidden Markov models ; Laplace equations ; Neural networks ; Speech recognition ; State estimation</subject><ispartof>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1998, Vol.2, p.821-824 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/675391$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/675391$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Willett, D.</creatorcontrib><creatorcontrib>Neukirchen, C.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><title>Efficient search with posterior probability estimates in HMM-based speech recognition</title><title>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181)</title><addtitle>ICASSP</addtitle><description>In this paper we present the methods we developed to estimate posterior probabilities for HMM states in continuous and discrete HMM-based speech recognition systems and several ways to speed up decoding by using these posterior probability estimates. The proposed pruning techniques are state deactivation pruning (SDP), similar to an approach proposed for hybrid recognition systems, and a novel posteriori-based lookahead technique, posteriori lookahead pruning (PLP), that evaluates future posteriors in order to exclude unlikely HMM states as early as possible during search. By applying the proposed methods we managed to vastly reduce the decoding time consumed by our time-synchronous Viterbi-decoder for recognition systems based on the Verbmobil and the Wall Street Journal database with hardly any additional search error.</description><subject>Computer science</subject><subject>Context modeling</subject><subject>Decoding</subject><subject>Distribution functions</subject><subject>Hidden Markov models</subject><subject>Laplace equations</subject><subject>Neural networks</subject><subject>Speech recognition</subject><subject>State estimation</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780344280</isbn><isbn>0780344286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1qwzAUhEV_oCb1BbLSBZxKlmT5LUtIm0JCC2mguyDJT41KahtJUHL7GpJhYFYzfAwhc84WnDN4els-73YfCw7QLhqtBPAbUtRCQ8WBfd2SEnTLJgsp65bdkYKrmlUNl_BAypR-2CSpFNOqIPuV98EF7DNNaKI70r-Qj3QcUsYYhkjHOFhjwynkM8WUw6_JmGjo6Xq7raxJ2NE0Ik7FiG747kMOQ_9I7r05JSyvOSP7l9Xncl1t3l8n-k0VuJa5Ulp1jW2EtxZqqS1vnfQgOOskohTAbG0RGo3ecdtY1rU1Ku_BgBSdlk7MyPyyGxDxMMaJLp4Pl0_EP_7mVQ8</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Willett, D.</creator><creator>Neukirchen, C.</creator><creator>Rigoll, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Efficient search with posterior probability estimates in HMM-based speech recognition</title><author>Willett, D. ; Neukirchen, C. ; Rigoll, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-575d6b63fbb9247b18c4f9310d4ee4390b2be967efc1b6b0d82e5ff9a943d74c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Computer science</topic><topic>Context modeling</topic><topic>Decoding</topic><topic>Distribution functions</topic><topic>Hidden Markov models</topic><topic>Laplace equations</topic><topic>Neural networks</topic><topic>Speech recognition</topic><topic>State estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Willett, D.</creatorcontrib><creatorcontrib>Neukirchen, C.</creatorcontrib><creatorcontrib>Rigoll, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Willett, D.</au><au>Neukirchen, C.</au><au>Rigoll, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient search with posterior probability estimates in HMM-based speech recognition</atitle><btitle>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181)</btitle><stitle>ICASSP</stitle><date>1998</date><risdate>1998</risdate><volume>2</volume><spage>821</spage><epage>824 vol.2</epage><pages>821-824 vol.2</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780344280</isbn><isbn>0780344286</isbn><abstract>In this paper we present the methods we developed to estimate posterior probabilities for HMM states in continuous and discrete HMM-based speech recognition systems and several ways to speed up decoding by using these posterior probability estimates. The proposed pruning techniques are state deactivation pruning (SDP), similar to an approach proposed for hybrid recognition systems, and a novel posteriori-based lookahead technique, posteriori lookahead pruning (PLP), that evaluates future posteriors in order to exclude unlikely HMM states as early as possible during search. By applying the proposed methods we managed to vastly reduce the decoding time consumed by our time-synchronous Viterbi-decoder for recognition systems based on the Verbmobil and the Wall Street Journal database with hardly any additional search error.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1998.675391</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1998, Vol.2, p.821-824 vol.2
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_675391
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Context modeling
Decoding
Distribution functions
Hidden Markov models
Laplace equations
Neural networks
Speech recognition
State estimation
title Efficient search with posterior probability estimates in HMM-based speech recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20search%20with%20posterior%20probability%20estimates%20in%20HMM-based%20speech%20recognition&rft.btitle=Proceedings%20of%20the%201998%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing,%20ICASSP%20'98%20(Cat.%20No.98CH36181)&rft.au=Willett,%20D.&rft.date=1998&rft.volume=2&rft.spage=821&rft.epage=824%20vol.2&rft.pages=821-824%20vol.2&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780344280&rft.isbn_list=0780344286&rft_id=info:doi/10.1109/ICASSP.1998.675391&rft_dat=%3Cieee_6IE%3E675391%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=675391&rfr_iscdi=true