Radial Basis Functions for Combining Shape and Speckle Tracking in 4D Echocardiography
Quantitative analysis of left ventricular deformation can provide valuable information about the extent of disease as well as the efficacy of treatment. In this work, we develop an adaptive multi-level compactly supported radial basis approach for deformation analysis in 3D+time echocardiography. Ou...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2014-06, Vol.33 (6), p.1275-1289 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1289 |
---|---|
container_issue | 6 |
container_start_page | 1275 |
container_title | IEEE transactions on medical imaging |
container_volume | 33 |
creator | Compas, Colin B. Wong, Emily Y. Xiaojie Huang Sampath, Smita Lin, Ben A. Pal, Prasanta Papademetris, Xenophon Thiele, Karl Dione, Donald P. Stacy, Mitchel Staib, Lawrence H. Sinusas, Albert J. O'Donnell, Matthew Duncan, James S. |
description | Quantitative analysis of left ventricular deformation can provide valuable information about the extent of disease as well as the efficacy of treatment. In this work, we develop an adaptive multi-level compactly supported radial basis approach for deformation analysis in 3D+time echocardiography. Our method combines displacement information from shape tracking of myocardial boundaries (derived from B-mode data) with mid-wall displacements from radio-frequency-based ultrasound speckle tracking. We evaluate our methods on open-chest canines (N=8) and show that our combined approach is better correlated to magnetic resonance tagging-derived strains than either individual method. We also are able to identify regions of myocardial infarction (confirmed by postmortem analysis) using radial strain values obtained with our approach. |
doi_str_mv | 10.1109/TMI.2014.2308894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6750085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6750085</ieee_id><sourcerecordid>1532949294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-7fcdb4f5d3c00c4a1e28f9c8d05bd47bf3de89b163a42ef80c9934920f50774f3</originalsourceid><addsrcrecordid>eNpdkc9rFDEYhoNY7Fq9C4IEvHiZ7Tf5MZNcBF1bLVQEu4q3kMkku2lnkzHZEfrfm2XXpfaUw_t875ePB6FXNczrGuT58uvVnEDN5oSCEJI9QbOac1ERzn49RTMgragAGnKKnud8C4XkIJ-hU8KEpIS3M_Tzu-69HvBHnX3Gl1MwWx9Dxi4mvIibzgcfVvhmrUeLdejxzWjN3WDxMmlzt4t8wOwTvjDraHTqfVwlPa7vX6ATp4dsXx7eM_Tj8mK5-FJdf_t8tfhwXRnG2LZqnek75nhPDYBhurZEOGlED7zrWds52lshu7qhmhHrBBgpKZMEHIe2ZY6eoff73nHqNrY3NmyTHtSY_EanexW1V_8nwa_VKv5RjAjKOSkF7w4FKf6ebN6qjc_GDoMONk5Z1ZwSWTZKVtC3j9DbOKVQzisUawCYaJpCwZ4yKeacrDt-pga1k6aKNLWTpg7Sysibh0ccB_5ZKsDrPeCttce4aTmA4PQv_FybUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546004866</pqid></control><display><type>article</type><title>Radial Basis Functions for Combining Shape and Speckle Tracking in 4D Echocardiography</title><source>IEEE Electronic Library (IEL)</source><creator>Compas, Colin B. ; Wong, Emily Y. ; Xiaojie Huang ; Sampath, Smita ; Lin, Ben A. ; Pal, Prasanta ; Papademetris, Xenophon ; Thiele, Karl ; Dione, Donald P. ; Stacy, Mitchel ; Staib, Lawrence H. ; Sinusas, Albert J. ; O'Donnell, Matthew ; Duncan, James S.</creator><creatorcontrib>Compas, Colin B. ; Wong, Emily Y. ; Xiaojie Huang ; Sampath, Smita ; Lin, Ben A. ; Pal, Prasanta ; Papademetris, Xenophon ; Thiele, Karl ; Dione, Donald P. ; Stacy, Mitchel ; Staib, Lawrence H. ; Sinusas, Albert J. ; O'Donnell, Matthew ; Duncan, James S.</creatorcontrib><description>Quantitative analysis of left ventricular deformation can provide valuable information about the extent of disease as well as the efficacy of treatment. In this work, we develop an adaptive multi-level compactly supported radial basis approach for deformation analysis in 3D+time echocardiography. Our method combines displacement information from shape tracking of myocardial boundaries (derived from B-mode data) with mid-wall displacements from radio-frequency-based ultrasound speckle tracking. We evaluate our methods on open-chest canines (N=8) and show that our combined approach is better correlated to magnetic resonance tagging-derived strains than either individual method. We also are able to identify regions of myocardial infarction (confirmed by postmortem analysis) using radial strain values obtained with our approach.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2014.2308894</identifier><identifier>PMID: 24893257</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; Biomedical image processing ; Computed tomography ; Correlation ; Dogs ; echocardiography ; Echocardiography, Four-Dimensional - methods ; image motion analysis ; Image Processing, Computer-Assisted - methods ; Male ; Movement ; Myocardial Infarction ; Myocardium ; Myocardium - pathology ; Shape ; Speckle ; Strain ; Tracking</subject><ispartof>IEEE transactions on medical imaging, 2014-06, Vol.33 (6), p.1275-1289</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014</rights><rights>2014 IEEE. 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-7fcdb4f5d3c00c4a1e28f9c8d05bd47bf3de89b163a42ef80c9934920f50774f3</citedby><cites>FETCH-LOGICAL-c444t-7fcdb4f5d3c00c4a1e28f9c8d05bd47bf3de89b163a42ef80c9934920f50774f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6750085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6750085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24893257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Compas, Colin B.</creatorcontrib><creatorcontrib>Wong, Emily Y.</creatorcontrib><creatorcontrib>Xiaojie Huang</creatorcontrib><creatorcontrib>Sampath, Smita</creatorcontrib><creatorcontrib>Lin, Ben A.</creatorcontrib><creatorcontrib>Pal, Prasanta</creatorcontrib><creatorcontrib>Papademetris, Xenophon</creatorcontrib><creatorcontrib>Thiele, Karl</creatorcontrib><creatorcontrib>Dione, Donald P.</creatorcontrib><creatorcontrib>Stacy, Mitchel</creatorcontrib><creatorcontrib>Staib, Lawrence H.</creatorcontrib><creatorcontrib>Sinusas, Albert J.</creatorcontrib><creatorcontrib>O'Donnell, Matthew</creatorcontrib><creatorcontrib>Duncan, James S.</creatorcontrib><title>Radial Basis Functions for Combining Shape and Speckle Tracking in 4D Echocardiography</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Quantitative analysis of left ventricular deformation can provide valuable information about the extent of disease as well as the efficacy of treatment. In this work, we develop an adaptive multi-level compactly supported radial basis approach for deformation analysis in 3D+time echocardiography. Our method combines displacement information from shape tracking of myocardial boundaries (derived from B-mode data) with mid-wall displacements from radio-frequency-based ultrasound speckle tracking. We evaluate our methods on open-chest canines (N=8) and show that our combined approach is better correlated to magnetic resonance tagging-derived strains than either individual method. We also are able to identify regions of myocardial infarction (confirmed by postmortem analysis) using radial strain values obtained with our approach.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biomedical image processing</subject><subject>Computed tomography</subject><subject>Correlation</subject><subject>Dogs</subject><subject>echocardiography</subject><subject>Echocardiography, Four-Dimensional - methods</subject><subject>image motion analysis</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Male</subject><subject>Movement</subject><subject>Myocardial Infarction</subject><subject>Myocardium</subject><subject>Myocardium - pathology</subject><subject>Shape</subject><subject>Speckle</subject><subject>Strain</subject><subject>Tracking</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc9rFDEYhoNY7Fq9C4IEvHiZ7Tf5MZNcBF1bLVQEu4q3kMkku2lnkzHZEfrfm2XXpfaUw_t875ePB6FXNczrGuT58uvVnEDN5oSCEJI9QbOac1ERzn49RTMgragAGnKKnud8C4XkIJ-hU8KEpIS3M_Tzu-69HvBHnX3Gl1MwWx9Dxi4mvIibzgcfVvhmrUeLdejxzWjN3WDxMmlzt4t8wOwTvjDraHTqfVwlPa7vX6ATp4dsXx7eM_Tj8mK5-FJdf_t8tfhwXRnG2LZqnek75nhPDYBhurZEOGlED7zrWds52lshu7qhmhHrBBgpKZMEHIe2ZY6eoff73nHqNrY3NmyTHtSY_EanexW1V_8nwa_VKv5RjAjKOSkF7w4FKf6ebN6qjc_GDoMONk5Z1ZwSWTZKVtC3j9DbOKVQzisUawCYaJpCwZ4yKeacrDt-pga1k6aKNLWTpg7Sysibh0ccB_5ZKsDrPeCttce4aTmA4PQv_FybUQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Compas, Colin B.</creator><creator>Wong, Emily Y.</creator><creator>Xiaojie Huang</creator><creator>Sampath, Smita</creator><creator>Lin, Ben A.</creator><creator>Pal, Prasanta</creator><creator>Papademetris, Xenophon</creator><creator>Thiele, Karl</creator><creator>Dione, Donald P.</creator><creator>Stacy, Mitchel</creator><creator>Staib, Lawrence H.</creator><creator>Sinusas, Albert J.</creator><creator>O'Donnell, Matthew</creator><creator>Duncan, James S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140601</creationdate><title>Radial Basis Functions for Combining Shape and Speckle Tracking in 4D Echocardiography</title><author>Compas, Colin B. ; Wong, Emily Y. ; Xiaojie Huang ; Sampath, Smita ; Lin, Ben A. ; Pal, Prasanta ; Papademetris, Xenophon ; Thiele, Karl ; Dione, Donald P. ; Stacy, Mitchel ; Staib, Lawrence H. ; Sinusas, Albert J. ; O'Donnell, Matthew ; Duncan, James S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-7fcdb4f5d3c00c4a1e28f9c8d05bd47bf3de89b163a42ef80c9934920f50774f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biomedical image processing</topic><topic>Computed tomography</topic><topic>Correlation</topic><topic>Dogs</topic><topic>echocardiography</topic><topic>Echocardiography, Four-Dimensional - methods</topic><topic>image motion analysis</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Male</topic><topic>Movement</topic><topic>Myocardial Infarction</topic><topic>Myocardium</topic><topic>Myocardium - pathology</topic><topic>Shape</topic><topic>Speckle</topic><topic>Strain</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Compas, Colin B.</creatorcontrib><creatorcontrib>Wong, Emily Y.</creatorcontrib><creatorcontrib>Xiaojie Huang</creatorcontrib><creatorcontrib>Sampath, Smita</creatorcontrib><creatorcontrib>Lin, Ben A.</creatorcontrib><creatorcontrib>Pal, Prasanta</creatorcontrib><creatorcontrib>Papademetris, Xenophon</creatorcontrib><creatorcontrib>Thiele, Karl</creatorcontrib><creatorcontrib>Dione, Donald P.</creatorcontrib><creatorcontrib>Stacy, Mitchel</creatorcontrib><creatorcontrib>Staib, Lawrence H.</creatorcontrib><creatorcontrib>Sinusas, Albert J.</creatorcontrib><creatorcontrib>O'Donnell, Matthew</creatorcontrib><creatorcontrib>Duncan, James S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Compas, Colin B.</au><au>Wong, Emily Y.</au><au>Xiaojie Huang</au><au>Sampath, Smita</au><au>Lin, Ben A.</au><au>Pal, Prasanta</au><au>Papademetris, Xenophon</au><au>Thiele, Karl</au><au>Dione, Donald P.</au><au>Stacy, Mitchel</au><au>Staib, Lawrence H.</au><au>Sinusas, Albert J.</au><au>O'Donnell, Matthew</au><au>Duncan, James S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial Basis Functions for Combining Shape and Speckle Tracking in 4D Echocardiography</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>33</volume><issue>6</issue><spage>1275</spage><epage>1289</epage><pages>1275-1289</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Quantitative analysis of left ventricular deformation can provide valuable information about the extent of disease as well as the efficacy of treatment. In this work, we develop an adaptive multi-level compactly supported radial basis approach for deformation analysis in 3D+time echocardiography. Our method combines displacement information from shape tracking of myocardial boundaries (derived from B-mode data) with mid-wall displacements from radio-frequency-based ultrasound speckle tracking. We evaluate our methods on open-chest canines (N=8) and show that our combined approach is better correlated to magnetic resonance tagging-derived strains than either individual method. We also are able to identify regions of myocardial infarction (confirmed by postmortem analysis) using radial strain values obtained with our approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24893257</pmid><doi>10.1109/TMI.2014.2308894</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2014-06, Vol.33 (6), p.1275-1289 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_6750085 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Animals Biomedical image processing Computed tomography Correlation Dogs echocardiography Echocardiography, Four-Dimensional - methods image motion analysis Image Processing, Computer-Assisted - methods Male Movement Myocardial Infarction Myocardium Myocardium - pathology Shape Speckle Strain Tracking |
title | Radial Basis Functions for Combining Shape and Speckle Tracking in 4D Echocardiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20Basis%20Functions%20for%20Combining%20Shape%20and%20Speckle%20Tracking%20in%204D%20Echocardiography&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Compas,%20Colin%20B.&rft.date=2014-06-01&rft.volume=33&rft.issue=6&rft.spage=1275&rft.epage=1289&rft.pages=1275-1289&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2014.2308894&rft_dat=%3Cproquest_RIE%3E1532949294%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546004866&rft_id=info:pmid/24893257&rft_ieee_id=6750085&rfr_iscdi=true |