TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks
Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2014-04, Vol.13 (4), p.2000-2011 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2011 |
---|---|
container_issue | 4 |
container_start_page | 2000 |
container_title | IEEE transactions on wireless communications |
container_volume | 13 |
creator | Rongpeng Li Zhifeng Zhao Xianfu Chen Palicot, Jacques Honggang Zhang |
description | Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead of depending on the dynamic traffic loads which are still quite challenging to precisely forecast, we firstly formulate the traffic variations as a Markov decision process. Afterwards, in order to foresightedly minimize the energy consumption of RANs, we design a reinforcement learning framework based BS switching operation scheme. Furthermore, to speed up the ongoing learning process, a transfer actor-critic algorithm (TACT), which utilizes the transferred learning expertise in historical periods or neighboring regions, is proposed and provably converges. In the end, we evaluate our proposed scheme by extensive simulations under various practical configurations and show that the proposed TACT algorithm contributes to a performance jump start and demonstrates the feasibility of significant energy efficiency improvement at the expense of tolerable delay performance. |
doi_str_mv | 10.1109/TWC.2014.022014.130840 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6747280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6747280</ieee_id><sourcerecordid>1620103372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-53cc4ea4f75180944043918476b4fb5506e1a3f490c67df57fe53bcc02379bc23</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhodiobX1FwgSKIK9mPXkO-PdMLRWWBR0xMuQzSY17eykJrMt_fdmnLIXXp2Q85yXnDxV9Q7DCmNoPva_uhUBzFZA_hVMQTE4qk4x56omhKlX85mKGhMpTqrXOd8BYCk4P622fdv1n1CL-mTG7F1CrZ1iqrsUpmDR2pk0hvEWXSezc08x3SMfE7oaXbp9Rj_M49wLI-rcMOwHk9B3sw2xZFiXM_rqpnkkn1fH3gzZvXmpZ9XP66u-u6nX3z5_6dp1bRnAVHNqLXOGecmxgoYxYLTBikmxYX7DOQiHDfWsASvk1nPpHacba4FQ2WwsoWfV5ZL72wz6IYWdSc86mqBv2rWe7wCDpJTAIy7sh4V9SPHP3uVJ70K2ZQ0zurjPGovymUCpnGMv_kPv4j6NZRONOeOq4ZI0hRILZVPMOTl_eAEGPYvSRZSeDelFlF5ElcH3L_EmWzP4IsKGfJgmijWCKl64twsXnHOHtpBMEgX0L1abmLU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545895729</pqid></control><display><type>article</type><title>TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Rongpeng Li ; Zhifeng Zhao ; Xianfu Chen ; Palicot, Jacques ; Honggang Zhang</creator><creatorcontrib>Rongpeng Li ; Zhifeng Zhao ; Xianfu Chen ; Palicot, Jacques ; Honggang Zhang</creatorcontrib><description>Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead of depending on the dynamic traffic loads which are still quite challenging to precisely forecast, we firstly formulate the traffic variations as a Markov decision process. Afterwards, in order to foresightedly minimize the energy consumption of RANs, we design a reinforcement learning framework based BS switching operation scheme. Furthermore, to speed up the ongoing learning process, a transfer actor-critic algorithm (TACT), which utilizes the transferred learning expertise in historical periods or neighboring regions, is proposed and provably converges. In the end, we evaluate our proposed scheme by extensive simulations under various practical configurations and show that the proposed TACT algorithm contributes to a performance jump start and demonstrates the feasibility of significant energy efficiency improvement at the expense of tolerable delay performance.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2014.022014.130840</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>actor-critic algorithm ; Algorithm design and analysis ; Algorithms ; Applied sciences ; base stations ; Computer Science ; Energy conservation ; Energy consumption ; Energy efficiency ; Energy management ; energy saving ; Engineering Sciences ; Equipments and installations ; Exact sciences and technology ; green communications ; Heuristic algorithms ; Learning ; Learning (artificial intelligence) ; Loads (forces) ; Markov analysis ; Mobile radiocommunication systems ; Radio access networks ; Radiocommunications ; reinforcement learning ; Signal and Image processing ; sleeping mode ; Switches ; Switching ; Switching and signalling ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teletraffic ; Traffic engineering ; Traffic flow ; transfer learning ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on wireless communications, 2014-04, Vol.13 (4), p.2000-2011</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-53cc4ea4f75180944043918476b4fb5506e1a3f490c67df57fe53bcc02379bc23</citedby><cites>FETCH-LOGICAL-c400t-53cc4ea4f75180944043918476b4fb5506e1a3f490c67df57fe53bcc02379bc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6747280$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6747280$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28496385$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://centralesupelec.hal.science/hal-01073320$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rongpeng Li</creatorcontrib><creatorcontrib>Zhifeng Zhao</creatorcontrib><creatorcontrib>Xianfu Chen</creatorcontrib><creatorcontrib>Palicot, Jacques</creatorcontrib><creatorcontrib>Honggang Zhang</creatorcontrib><title>TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead of depending on the dynamic traffic loads which are still quite challenging to precisely forecast, we firstly formulate the traffic variations as a Markov decision process. Afterwards, in order to foresightedly minimize the energy consumption of RANs, we design a reinforcement learning framework based BS switching operation scheme. Furthermore, to speed up the ongoing learning process, a transfer actor-critic algorithm (TACT), which utilizes the transferred learning expertise in historical periods or neighboring regions, is proposed and provably converges. In the end, we evaluate our proposed scheme by extensive simulations under various practical configurations and show that the proposed TACT algorithm contributes to a performance jump start and demonstrates the feasibility of significant energy efficiency improvement at the expense of tolerable delay performance.</description><subject>actor-critic algorithm</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>base stations</subject><subject>Computer Science</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>energy saving</subject><subject>Engineering Sciences</subject><subject>Equipments and installations</subject><subject>Exact sciences and technology</subject><subject>green communications</subject><subject>Heuristic algorithms</subject><subject>Learning</subject><subject>Learning (artificial intelligence)</subject><subject>Loads (forces)</subject><subject>Markov analysis</subject><subject>Mobile radiocommunication systems</subject><subject>Radio access networks</subject><subject>Radiocommunications</subject><subject>reinforcement learning</subject><subject>Signal and Image processing</subject><subject>sleeping mode</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching and signalling</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teletraffic</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>transfer learning</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkV1rFDEUhodiobX1FwgSKIK9mPXkO-PdMLRWWBR0xMuQzSY17eykJrMt_fdmnLIXXp2Q85yXnDxV9Q7DCmNoPva_uhUBzFZA_hVMQTE4qk4x56omhKlX85mKGhMpTqrXOd8BYCk4P622fdv1n1CL-mTG7F1CrZ1iqrsUpmDR2pk0hvEWXSezc08x3SMfE7oaXbp9Rj_M49wLI-rcMOwHk9B3sw2xZFiXM_rqpnkkn1fH3gzZvXmpZ9XP66u-u6nX3z5_6dp1bRnAVHNqLXOGecmxgoYxYLTBikmxYX7DOQiHDfWsASvk1nPpHacba4FQ2WwsoWfV5ZL72wz6IYWdSc86mqBv2rWe7wCDpJTAIy7sh4V9SPHP3uVJ70K2ZQ0zurjPGovymUCpnGMv_kPv4j6NZRONOeOq4ZI0hRILZVPMOTl_eAEGPYvSRZSeDelFlF5ElcH3L_EmWzP4IsKGfJgmijWCKl64twsXnHOHtpBMEgX0L1abmLU</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Rongpeng Li</creator><creator>Zhifeng Zhao</creator><creator>Xianfu Chen</creator><creator>Palicot, Jacques</creator><creator>Honggang Zhang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope></search><sort><creationdate>20140401</creationdate><title>TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks</title><author>Rongpeng Li ; Zhifeng Zhao ; Xianfu Chen ; Palicot, Jacques ; Honggang Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-53cc4ea4f75180944043918476b4fb5506e1a3f490c67df57fe53bcc02379bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>actor-critic algorithm</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>base stations</topic><topic>Computer Science</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>energy saving</topic><topic>Engineering Sciences</topic><topic>Equipments and installations</topic><topic>Exact sciences and technology</topic><topic>green communications</topic><topic>Heuristic algorithms</topic><topic>Learning</topic><topic>Learning (artificial intelligence)</topic><topic>Loads (forces)</topic><topic>Markov analysis</topic><topic>Mobile radiocommunication systems</topic><topic>Radio access networks</topic><topic>Radiocommunications</topic><topic>reinforcement learning</topic><topic>Signal and Image processing</topic><topic>sleeping mode</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching and signalling</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teletraffic</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>transfer learning</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rongpeng Li</creatorcontrib><creatorcontrib>Zhifeng Zhao</creatorcontrib><creatorcontrib>Xianfu Chen</creatorcontrib><creatorcontrib>Palicot, Jacques</creatorcontrib><creatorcontrib>Honggang Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rongpeng Li</au><au>Zhifeng Zhao</au><au>Xianfu Chen</au><au>Palicot, Jacques</au><au>Honggang Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>13</volume><issue>4</issue><spage>2000</spage><epage>2011</epage><pages>2000-2011</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead of depending on the dynamic traffic loads which are still quite challenging to precisely forecast, we firstly formulate the traffic variations as a Markov decision process. Afterwards, in order to foresightedly minimize the energy consumption of RANs, we design a reinforcement learning framework based BS switching operation scheme. Furthermore, to speed up the ongoing learning process, a transfer actor-critic algorithm (TACT), which utilizes the transferred learning expertise in historical periods or neighboring regions, is proposed and provably converges. In the end, we evaluate our proposed scheme by extensive simulations under various practical configurations and show that the proposed TACT algorithm contributes to a performance jump start and demonstrates the feasibility of significant energy efficiency improvement at the expense of tolerable delay performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2014.022014.130840</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2014-04, Vol.13 (4), p.2000-2011 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_6747280 |
source | IEEE Electronic Library (IEL) |
subjects | actor-critic algorithm Algorithm design and analysis Algorithms Applied sciences base stations Computer Science Energy conservation Energy consumption Energy efficiency Energy management energy saving Engineering Sciences Equipments and installations Exact sciences and technology green communications Heuristic algorithms Learning Learning (artificial intelligence) Loads (forces) Markov analysis Mobile radiocommunication systems Radio access networks Radiocommunications reinforcement learning Signal and Image processing sleeping mode Switches Switching Switching and signalling Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Teletraffic Traffic engineering Traffic flow transfer learning Transmission and modulation (techniques and equipments) |
title | TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TACT:%20A%20Transfer%20Actor-Critic%20Learning%20Framework%20for%20Energy%20Saving%20in%20Cellular%20Radio%20Access%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Rongpeng%20Li&rft.date=2014-04-01&rft.volume=13&rft.issue=4&rft.spage=2000&rft.epage=2011&rft.pages=2000-2011&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2014.022014.130840&rft_dat=%3Cproquest_RIE%3E1620103372%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545895729&rft_id=info:pmid/&rft_ieee_id=6747280&rfr_iscdi=true |