TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks

Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2014-04, Vol.13 (4), p.2000-2011
Hauptverfasser: Rongpeng Li, Zhifeng Zhao, Xianfu Chen, Palicot, Jacques, Honggang Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2011
container_issue 4
container_start_page 2000
container_title IEEE transactions on wireless communications
container_volume 13
creator Rongpeng Li
Zhifeng Zhao
Xianfu Chen
Palicot, Jacques
Honggang Zhang
description Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead of depending on the dynamic traffic loads which are still quite challenging to precisely forecast, we firstly formulate the traffic variations as a Markov decision process. Afterwards, in order to foresightedly minimize the energy consumption of RANs, we design a reinforcement learning framework based BS switching operation scheme. Furthermore, to speed up the ongoing learning process, a transfer actor-critic algorithm (TACT), which utilizes the transferred learning expertise in historical periods or neighboring regions, is proposed and provably converges. In the end, we evaluate our proposed scheme by extensive simulations under various practical configurations and show that the proposed TACT algorithm contributes to a performance jump start and demonstrates the feasibility of significant energy efficiency improvement at the expense of tolerable delay performance.
doi_str_mv 10.1109/TWC.2014.022014.130840
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6747280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6747280</ieee_id><sourcerecordid>1620103372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-53cc4ea4f75180944043918476b4fb5506e1a3f490c67df57fe53bcc02379bc23</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhodiobX1FwgSKIK9mPXkO-PdMLRWWBR0xMuQzSY17eykJrMt_fdmnLIXXp2Q85yXnDxV9Q7DCmNoPva_uhUBzFZA_hVMQTE4qk4x56omhKlX85mKGhMpTqrXOd8BYCk4P622fdv1n1CL-mTG7F1CrZ1iqrsUpmDR2pk0hvEWXSezc08x3SMfE7oaXbp9Rj_M49wLI-rcMOwHk9B3sw2xZFiXM_rqpnkkn1fH3gzZvXmpZ9XP66u-u6nX3z5_6dp1bRnAVHNqLXOGecmxgoYxYLTBikmxYX7DOQiHDfWsASvk1nPpHacba4FQ2WwsoWfV5ZL72wz6IYWdSc86mqBv2rWe7wCDpJTAIy7sh4V9SPHP3uVJ70K2ZQ0zurjPGovymUCpnGMv_kPv4j6NZRONOeOq4ZI0hRILZVPMOTl_eAEGPYvSRZSeDelFlF5ElcH3L_EmWzP4IsKGfJgmijWCKl64twsXnHOHtpBMEgX0L1abmLU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545895729</pqid></control><display><type>article</type><title>TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Rongpeng Li ; Zhifeng Zhao ; Xianfu Chen ; Palicot, Jacques ; Honggang Zhang</creator><creatorcontrib>Rongpeng Li ; Zhifeng Zhao ; Xianfu Chen ; Palicot, Jacques ; Honggang Zhang</creatorcontrib><description>Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead of depending on the dynamic traffic loads which are still quite challenging to precisely forecast, we firstly formulate the traffic variations as a Markov decision process. Afterwards, in order to foresightedly minimize the energy consumption of RANs, we design a reinforcement learning framework based BS switching operation scheme. Furthermore, to speed up the ongoing learning process, a transfer actor-critic algorithm (TACT), which utilizes the transferred learning expertise in historical periods or neighboring regions, is proposed and provably converges. In the end, we evaluate our proposed scheme by extensive simulations under various practical configurations and show that the proposed TACT algorithm contributes to a performance jump start and demonstrates the feasibility of significant energy efficiency improvement at the expense of tolerable delay performance.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2014.022014.130840</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>actor-critic algorithm ; Algorithm design and analysis ; Algorithms ; Applied sciences ; base stations ; Computer Science ; Energy conservation ; Energy consumption ; Energy efficiency ; Energy management ; energy saving ; Engineering Sciences ; Equipments and installations ; Exact sciences and technology ; green communications ; Heuristic algorithms ; Learning ; Learning (artificial intelligence) ; Loads (forces) ; Markov analysis ; Mobile radiocommunication systems ; Radio access networks ; Radiocommunications ; reinforcement learning ; Signal and Image processing ; sleeping mode ; Switches ; Switching ; Switching and signalling ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teletraffic ; Traffic engineering ; Traffic flow ; transfer learning ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on wireless communications, 2014-04, Vol.13 (4), p.2000-2011</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-53cc4ea4f75180944043918476b4fb5506e1a3f490c67df57fe53bcc02379bc23</citedby><cites>FETCH-LOGICAL-c400t-53cc4ea4f75180944043918476b4fb5506e1a3f490c67df57fe53bcc02379bc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6747280$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6747280$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28496385$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://centralesupelec.hal.science/hal-01073320$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rongpeng Li</creatorcontrib><creatorcontrib>Zhifeng Zhao</creatorcontrib><creatorcontrib>Xianfu Chen</creatorcontrib><creatorcontrib>Palicot, Jacques</creatorcontrib><creatorcontrib>Honggang Zhang</creatorcontrib><title>TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead of depending on the dynamic traffic loads which are still quite challenging to precisely forecast, we firstly formulate the traffic variations as a Markov decision process. Afterwards, in order to foresightedly minimize the energy consumption of RANs, we design a reinforcement learning framework based BS switching operation scheme. Furthermore, to speed up the ongoing learning process, a transfer actor-critic algorithm (TACT), which utilizes the transferred learning expertise in historical periods or neighboring regions, is proposed and provably converges. In the end, we evaluate our proposed scheme by extensive simulations under various practical configurations and show that the proposed TACT algorithm contributes to a performance jump start and demonstrates the feasibility of significant energy efficiency improvement at the expense of tolerable delay performance.</description><subject>actor-critic algorithm</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>base stations</subject><subject>Computer Science</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>energy saving</subject><subject>Engineering Sciences</subject><subject>Equipments and installations</subject><subject>Exact sciences and technology</subject><subject>green communications</subject><subject>Heuristic algorithms</subject><subject>Learning</subject><subject>Learning (artificial intelligence)</subject><subject>Loads (forces)</subject><subject>Markov analysis</subject><subject>Mobile radiocommunication systems</subject><subject>Radio access networks</subject><subject>Radiocommunications</subject><subject>reinforcement learning</subject><subject>Signal and Image processing</subject><subject>sleeping mode</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching and signalling</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teletraffic</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>transfer learning</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkV1rFDEUhodiobX1FwgSKIK9mPXkO-PdMLRWWBR0xMuQzSY17eykJrMt_fdmnLIXXp2Q85yXnDxV9Q7DCmNoPva_uhUBzFZA_hVMQTE4qk4x56omhKlX85mKGhMpTqrXOd8BYCk4P622fdv1n1CL-mTG7F1CrZ1iqrsUpmDR2pk0hvEWXSezc08x3SMfE7oaXbp9Rj_M49wLI-rcMOwHk9B3sw2xZFiXM_rqpnkkn1fH3gzZvXmpZ9XP66u-u6nX3z5_6dp1bRnAVHNqLXOGecmxgoYxYLTBikmxYX7DOQiHDfWsASvk1nPpHacba4FQ2WwsoWfV5ZL72wz6IYWdSc86mqBv2rWe7wCDpJTAIy7sh4V9SPHP3uVJ70K2ZQ0zurjPGovymUCpnGMv_kPv4j6NZRONOeOq4ZI0hRILZVPMOTl_eAEGPYvSRZSeDelFlF5ElcH3L_EmWzP4IsKGfJgmijWCKl64twsXnHOHtpBMEgX0L1abmLU</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Rongpeng Li</creator><creator>Zhifeng Zhao</creator><creator>Xianfu Chen</creator><creator>Palicot, Jacques</creator><creator>Honggang Zhang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope></search><sort><creationdate>20140401</creationdate><title>TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks</title><author>Rongpeng Li ; Zhifeng Zhao ; Xianfu Chen ; Palicot, Jacques ; Honggang Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-53cc4ea4f75180944043918476b4fb5506e1a3f490c67df57fe53bcc02379bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>actor-critic algorithm</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>base stations</topic><topic>Computer Science</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>energy saving</topic><topic>Engineering Sciences</topic><topic>Equipments and installations</topic><topic>Exact sciences and technology</topic><topic>green communications</topic><topic>Heuristic algorithms</topic><topic>Learning</topic><topic>Learning (artificial intelligence)</topic><topic>Loads (forces)</topic><topic>Markov analysis</topic><topic>Mobile radiocommunication systems</topic><topic>Radio access networks</topic><topic>Radiocommunications</topic><topic>reinforcement learning</topic><topic>Signal and Image processing</topic><topic>sleeping mode</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching and signalling</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teletraffic</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>transfer learning</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rongpeng Li</creatorcontrib><creatorcontrib>Zhifeng Zhao</creatorcontrib><creatorcontrib>Xianfu Chen</creatorcontrib><creatorcontrib>Palicot, Jacques</creatorcontrib><creatorcontrib>Honggang Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rongpeng Li</au><au>Zhifeng Zhao</au><au>Xianfu Chen</au><au>Palicot, Jacques</au><au>Honggang Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>13</volume><issue>4</issue><spage>2000</spage><epage>2011</epage><pages>2000-2011</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead of depending on the dynamic traffic loads which are still quite challenging to precisely forecast, we firstly formulate the traffic variations as a Markov decision process. Afterwards, in order to foresightedly minimize the energy consumption of RANs, we design a reinforcement learning framework based BS switching operation scheme. Furthermore, to speed up the ongoing learning process, a transfer actor-critic algorithm (TACT), which utilizes the transferred learning expertise in historical periods or neighboring regions, is proposed and provably converges. In the end, we evaluate our proposed scheme by extensive simulations under various practical configurations and show that the proposed TACT algorithm contributes to a performance jump start and demonstrates the feasibility of significant energy efficiency improvement at the expense of tolerable delay performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2014.022014.130840</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2014-04, Vol.13 (4), p.2000-2011
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_6747280
source IEEE Electronic Library (IEL)
subjects actor-critic algorithm
Algorithm design and analysis
Algorithms
Applied sciences
base stations
Computer Science
Energy conservation
Energy consumption
Energy efficiency
Energy management
energy saving
Engineering Sciences
Equipments and installations
Exact sciences and technology
green communications
Heuristic algorithms
Learning
Learning (artificial intelligence)
Loads (forces)
Markov analysis
Mobile radiocommunication systems
Radio access networks
Radiocommunications
reinforcement learning
Signal and Image processing
sleeping mode
Switches
Switching
Switching and signalling
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Teletraffic
Traffic engineering
Traffic flow
transfer learning
Transmission and modulation (techniques and equipments)
title TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TACT:%20A%20Transfer%20Actor-Critic%20Learning%20Framework%20for%20Energy%20Saving%20in%20Cellular%20Radio%20Access%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Rongpeng%20Li&rft.date=2014-04-01&rft.volume=13&rft.issue=4&rft.spage=2000&rft.epage=2011&rft.pages=2000-2011&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2014.022014.130840&rft_dat=%3Cproquest_RIE%3E1620103372%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545895729&rft_id=info:pmid/&rft_ieee_id=6747280&rfr_iscdi=true