Representing and learning temporal relationships among experimental variables
The authors describe the necessity to capture temporal information in scientific experiment design for analysis by machine learning algorithms that can learn useful temporal patterns among experimental variables. They have identified three types of temporal information, namely duration, rate of chan...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | |
container_start_page | 148 |
container_title | |
container_volume | |
creator | Gopalakrishnan, V. Buchanan, B.G. |
description | The authors describe the necessity to capture temporal information in scientific experiment design for analysis by machine learning algorithms that can learn useful temporal patterns among experimental variables. They have identified three types of temporal information, namely duration, rate of change, and sequence of application of laboratory operators that are useful to learn from experimental data. Their motivation stems from study of experimental design in the domain of macromolecular crystallography. They identify the challenges posed both by the domain as well as the temporal information on machine learning programs, and describe work in progress. They outline the method of temporal specialization for inducing temporal relations between experimental variables, and illustrate with an example from the domain. |
doi_str_mv | 10.1109/TIME.1998.674144 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_674144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>674144</ieee_id><sourcerecordid>674144</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-cf47d4635e9af395d14ca46f0aa736789335191e6171d7f6a60fdaa1ca5d35763</originalsourceid><addsrcrecordid>eNotT8tKBDEQDIigrHMXT_MDM6ZJJo-jLKsu7CLI3Jd20tHIPEIyiP69kbUvRVEPqhm7Bd4CcHvf74-7Fqw1rdISpLxgldWGGzDKSC3sFaty_uTlhFWdVtfs-EoxUaZ5DfN7jbOrR8I0_5GVprgkHOtEI65hmfNHiLnGaSkifUdKYSq5YvjCFPBtpHzDLj2Omap_3LD-cddvn5vDy9N--3BogrFrM3ipnVSiI4te2M6BHFAqzxG1UNpYITqwQAo0OO0VKu4dIgzYOVFWiw27O9cGIjrFsgPTz-n8svgFNxhN0A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Representing and learning temporal relationships among experimental variables</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gopalakrishnan, V. ; Buchanan, B.G.</creator><creatorcontrib>Gopalakrishnan, V. ; Buchanan, B.G.</creatorcontrib><description>The authors describe the necessity to capture temporal information in scientific experiment design for analysis by machine learning algorithms that can learn useful temporal patterns among experimental variables. They have identified three types of temporal information, namely duration, rate of change, and sequence of application of laboratory operators that are useful to learn from experimental data. Their motivation stems from study of experimental design in the domain of macromolecular crystallography. They identify the challenges posed both by the domain as well as the temporal information on machine learning programs, and describe work in progress. They outline the method of temporal specialization for inducing temporal relations between experimental variables, and illustrate with an example from the domain.</description><identifier>ISBN: 9780818684739</identifier><identifier>ISBN: 0818684739</identifier><identifier>DOI: 10.1109/TIME.1998.674144</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Computer science ; Crystallography ; Identity-based encryption ; Intelligent systems ; Laboratories ; Machine learning ; Machine learning algorithms ; Reactive power ; Read only memory</subject><ispartof>Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No.98EX157), 1998, p.148-155</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/674144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/674144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gopalakrishnan, V.</creatorcontrib><creatorcontrib>Buchanan, B.G.</creatorcontrib><title>Representing and learning temporal relationships among experimental variables</title><title>Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No.98EX157)</title><addtitle>TIME</addtitle><description>The authors describe the necessity to capture temporal information in scientific experiment design for analysis by machine learning algorithms that can learn useful temporal patterns among experimental variables. They have identified three types of temporal information, namely duration, rate of change, and sequence of application of laboratory operators that are useful to learn from experimental data. Their motivation stems from study of experimental design in the domain of macromolecular crystallography. They identify the challenges posed both by the domain as well as the temporal information on machine learning programs, and describe work in progress. They outline the method of temporal specialization for inducing temporal relations between experimental variables, and illustrate with an example from the domain.</description><subject>Algorithm design and analysis</subject><subject>Computer science</subject><subject>Crystallography</subject><subject>Identity-based encryption</subject><subject>Intelligent systems</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Reactive power</subject><subject>Read only memory</subject><isbn>9780818684739</isbn><isbn>0818684739</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT8tKBDEQDIigrHMXT_MDM6ZJJo-jLKsu7CLI3Jd20tHIPEIyiP69kbUvRVEPqhm7Bd4CcHvf74-7Fqw1rdISpLxgldWGGzDKSC3sFaty_uTlhFWdVtfs-EoxUaZ5DfN7jbOrR8I0_5GVprgkHOtEI65hmfNHiLnGaSkifUdKYSq5YvjCFPBtpHzDLj2Omap_3LD-cddvn5vDy9N--3BogrFrM3ipnVSiI4te2M6BHFAqzxG1UNpYITqwQAo0OO0VKu4dIgzYOVFWiw27O9cGIjrFsgPTz-n8svgFNxhN0A</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Gopalakrishnan, V.</creator><creator>Buchanan, B.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>Representing and learning temporal relationships among experimental variables</title><author>Gopalakrishnan, V. ; Buchanan, B.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-cf47d4635e9af395d14ca46f0aa736789335191e6171d7f6a60fdaa1ca5d35763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithm design and analysis</topic><topic>Computer science</topic><topic>Crystallography</topic><topic>Identity-based encryption</topic><topic>Intelligent systems</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Reactive power</topic><topic>Read only memory</topic><toplevel>online_resources</toplevel><creatorcontrib>Gopalakrishnan, V.</creatorcontrib><creatorcontrib>Buchanan, B.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gopalakrishnan, V.</au><au>Buchanan, B.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Representing and learning temporal relationships among experimental variables</atitle><btitle>Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No.98EX157)</btitle><stitle>TIME</stitle><date>1998</date><risdate>1998</risdate><spage>148</spage><epage>155</epage><pages>148-155</pages><isbn>9780818684739</isbn><isbn>0818684739</isbn><abstract>The authors describe the necessity to capture temporal information in scientific experiment design for analysis by machine learning algorithms that can learn useful temporal patterns among experimental variables. They have identified three types of temporal information, namely duration, rate of change, and sequence of application of laboratory operators that are useful to learn from experimental data. Their motivation stems from study of experimental design in the domain of macromolecular crystallography. They identify the challenges posed both by the domain as well as the temporal information on machine learning programs, and describe work in progress. They outline the method of temporal specialization for inducing temporal relations between experimental variables, and illustrate with an example from the domain.</abstract><pub>IEEE</pub><doi>10.1109/TIME.1998.674144</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780818684739 |
ispartof | Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No.98EX157), 1998, p.148-155 |
issn | |
language | eng |
recordid | cdi_ieee_primary_674144 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Computer science Crystallography Identity-based encryption Intelligent systems Laboratories Machine learning Machine learning algorithms Reactive power Read only memory |
title | Representing and learning temporal relationships among experimental variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Representing%20and%20learning%20temporal%20relationships%20among%20experimental%20variables&rft.btitle=Proceedings.%20Fifth%20International%20Workshop%20on%20Temporal%20Representation%20and%20Reasoning%20(Cat.%20No.98EX157)&rft.au=Gopalakrishnan,%20V.&rft.date=1998&rft.spage=148&rft.epage=155&rft.pages=148-155&rft.isbn=9780818684739&rft.isbn_list=0818684739&rft_id=info:doi/10.1109/TIME.1998.674144&rft_dat=%3Cieee_6IE%3E674144%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=674144&rfr_iscdi=true |