Representing and learning temporal relationships among experimental variables

The authors describe the necessity to capture temporal information in scientific experiment design for analysis by machine learning algorithms that can learn useful temporal patterns among experimental variables. They have identified three types of temporal information, namely duration, rate of chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gopalakrishnan, V., Buchanan, B.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue
container_start_page 148
container_title
container_volume
creator Gopalakrishnan, V.
Buchanan, B.G.
description The authors describe the necessity to capture temporal information in scientific experiment design for analysis by machine learning algorithms that can learn useful temporal patterns among experimental variables. They have identified three types of temporal information, namely duration, rate of change, and sequence of application of laboratory operators that are useful to learn from experimental data. Their motivation stems from study of experimental design in the domain of macromolecular crystallography. They identify the challenges posed both by the domain as well as the temporal information on machine learning programs, and describe work in progress. They outline the method of temporal specialization for inducing temporal relations between experimental variables, and illustrate with an example from the domain.
doi_str_mv 10.1109/TIME.1998.674144
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_674144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>674144</ieee_id><sourcerecordid>674144</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-cf47d4635e9af395d14ca46f0aa736789335191e6171d7f6a60fdaa1ca5d35763</originalsourceid><addsrcrecordid>eNotT8tKBDEQDIigrHMXT_MDM6ZJJo-jLKsu7CLI3Jd20tHIPEIyiP69kbUvRVEPqhm7Bd4CcHvf74-7Fqw1rdISpLxgldWGGzDKSC3sFaty_uTlhFWdVtfs-EoxUaZ5DfN7jbOrR8I0_5GVprgkHOtEI65hmfNHiLnGaSkifUdKYSq5YvjCFPBtpHzDLj2Omap_3LD-cddvn5vDy9N--3BogrFrM3ipnVSiI4te2M6BHFAqzxG1UNpYITqwQAo0OO0VKu4dIgzYOVFWiw27O9cGIjrFsgPTz-n8svgFNxhN0A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Representing and learning temporal relationships among experimental variables</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gopalakrishnan, V. ; Buchanan, B.G.</creator><creatorcontrib>Gopalakrishnan, V. ; Buchanan, B.G.</creatorcontrib><description>The authors describe the necessity to capture temporal information in scientific experiment design for analysis by machine learning algorithms that can learn useful temporal patterns among experimental variables. They have identified three types of temporal information, namely duration, rate of change, and sequence of application of laboratory operators that are useful to learn from experimental data. Their motivation stems from study of experimental design in the domain of macromolecular crystallography. They identify the challenges posed both by the domain as well as the temporal information on machine learning programs, and describe work in progress. They outline the method of temporal specialization for inducing temporal relations between experimental variables, and illustrate with an example from the domain.</description><identifier>ISBN: 9780818684739</identifier><identifier>ISBN: 0818684739</identifier><identifier>DOI: 10.1109/TIME.1998.674144</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Computer science ; Crystallography ; Identity-based encryption ; Intelligent systems ; Laboratories ; Machine learning ; Machine learning algorithms ; Reactive power ; Read only memory</subject><ispartof>Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No.98EX157), 1998, p.148-155</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/674144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/674144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gopalakrishnan, V.</creatorcontrib><creatorcontrib>Buchanan, B.G.</creatorcontrib><title>Representing and learning temporal relationships among experimental variables</title><title>Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No.98EX157)</title><addtitle>TIME</addtitle><description>The authors describe the necessity to capture temporal information in scientific experiment design for analysis by machine learning algorithms that can learn useful temporal patterns among experimental variables. They have identified three types of temporal information, namely duration, rate of change, and sequence of application of laboratory operators that are useful to learn from experimental data. Their motivation stems from study of experimental design in the domain of macromolecular crystallography. They identify the challenges posed both by the domain as well as the temporal information on machine learning programs, and describe work in progress. They outline the method of temporal specialization for inducing temporal relations between experimental variables, and illustrate with an example from the domain.</description><subject>Algorithm design and analysis</subject><subject>Computer science</subject><subject>Crystallography</subject><subject>Identity-based encryption</subject><subject>Intelligent systems</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Reactive power</subject><subject>Read only memory</subject><isbn>9780818684739</isbn><isbn>0818684739</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT8tKBDEQDIigrHMXT_MDM6ZJJo-jLKsu7CLI3Jd20tHIPEIyiP69kbUvRVEPqhm7Bd4CcHvf74-7Fqw1rdISpLxgldWGGzDKSC3sFaty_uTlhFWdVtfs-EoxUaZ5DfN7jbOrR8I0_5GVprgkHOtEI65hmfNHiLnGaSkifUdKYSq5YvjCFPBtpHzDLj2Omap_3LD-cddvn5vDy9N--3BogrFrM3ipnVSiI4te2M6BHFAqzxG1UNpYITqwQAo0OO0VKu4dIgzYOVFWiw27O9cGIjrFsgPTz-n8svgFNxhN0A</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Gopalakrishnan, V.</creator><creator>Buchanan, B.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>Representing and learning temporal relationships among experimental variables</title><author>Gopalakrishnan, V. ; Buchanan, B.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-cf47d4635e9af395d14ca46f0aa736789335191e6171d7f6a60fdaa1ca5d35763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithm design and analysis</topic><topic>Computer science</topic><topic>Crystallography</topic><topic>Identity-based encryption</topic><topic>Intelligent systems</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Reactive power</topic><topic>Read only memory</topic><toplevel>online_resources</toplevel><creatorcontrib>Gopalakrishnan, V.</creatorcontrib><creatorcontrib>Buchanan, B.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gopalakrishnan, V.</au><au>Buchanan, B.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Representing and learning temporal relationships among experimental variables</atitle><btitle>Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No.98EX157)</btitle><stitle>TIME</stitle><date>1998</date><risdate>1998</risdate><spage>148</spage><epage>155</epage><pages>148-155</pages><isbn>9780818684739</isbn><isbn>0818684739</isbn><abstract>The authors describe the necessity to capture temporal information in scientific experiment design for analysis by machine learning algorithms that can learn useful temporal patterns among experimental variables. They have identified three types of temporal information, namely duration, rate of change, and sequence of application of laboratory operators that are useful to learn from experimental data. Their motivation stems from study of experimental design in the domain of macromolecular crystallography. They identify the challenges posed both by the domain as well as the temporal information on machine learning programs, and describe work in progress. They outline the method of temporal specialization for inducing temporal relations between experimental variables, and illustrate with an example from the domain.</abstract><pub>IEEE</pub><doi>10.1109/TIME.1998.674144</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780818684739
ispartof Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No.98EX157), 1998, p.148-155
issn
language eng
recordid cdi_ieee_primary_674144
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Computer science
Crystallography
Identity-based encryption
Intelligent systems
Laboratories
Machine learning
Machine learning algorithms
Reactive power
Read only memory
title Representing and learning temporal relationships among experimental variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Representing%20and%20learning%20temporal%20relationships%20among%20experimental%20variables&rft.btitle=Proceedings.%20Fifth%20International%20Workshop%20on%20Temporal%20Representation%20and%20Reasoning%20(Cat.%20No.98EX157)&rft.au=Gopalakrishnan,%20V.&rft.date=1998&rft.spage=148&rft.epage=155&rft.pages=148-155&rft.isbn=9780818684739&rft.isbn_list=0818684739&rft_id=info:doi/10.1109/TIME.1998.674144&rft_dat=%3Cieee_6IE%3E674144%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=674144&rfr_iscdi=true