Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method
Power system loads are one of the crucial elements of modern power systems and, as such, must be properly modelled in stability studies. However, the static and dynamic characteristics of a load are commonly unknown, extremely nonlinear, and are usually time varying. Consequently, a measurement-base...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2015-04, Vol.30 (2), p.553-560 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 560 |
---|---|
container_issue | 2 |
container_start_page | 553 |
container_title | IEEE transactions on power delivery |
container_volume | 30 |
creator | Regulski, P. Vilchis-Rodriguez, D. S. Djurovic, S. Terzija, V. |
description | Power system loads are one of the crucial elements of modern power systems and, as such, must be properly modelled in stability studies. However, the static and dynamic characteristics of a load are commonly unknown, extremely nonlinear, and are usually time varying. Consequently, a measurement-based approach for determining the load characteristics would offer a significant advantage since it could update the parameters of load models directly from the available system measurements. For this purpose and in order to accurately determine load model parameters, a suitable parameter estimation method must be applied. The conventional approach to this problem favors the use of standard nonlinear estimators or artificial intelligence (AI)-based methods. In this paper, a new solution for determining the unknown load model parameters is proposed-an improved particle swarm optimization (IPSO) method. The proposed method is an AI-type technique similar to the commonly used genetic algorithms (GAs) and is shown to provide a promising alternative. This paper presents a performance comparison of IPSO and GA using computer simulations and measured data obtained from realistic laboratory experiments. |
doi_str_mv | 10.1109/TPWRD.2014.2301219 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6734722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6734722</ieee_id><sourcerecordid>10_1109_TPWRD_2014_2301219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-7a50ffad9d282fdb3452fefadd209bdc557a5a3a68733532a104372fc13fb30e3</originalsourceid><addsrcrecordid>eNo9kN1KAzEQRoMoWKsvoDd5ga2Tn202l1KrFlpatMXLJbuZ6Eq3WZKg6NO7tcWrgZnvfDCHkGsGI8ZA365Xr8_3Iw5MjrgAxpk-IQOmhcokh-KUDKAo8qzQSp2Tixg_AECChgGppjE1rUmN31Hv6MS3nY9NQjr3xtKFt7ilKxNMiwlDpJvY7N6o2dFZ2wX_iXZ_TE29RfryZUJLl11f1_wcCheY3r29JGfObCNeHeeQbB6m68lTNl8-ziZ386yWoFKmTA7OGastL7izlZA5d9gvLAdd2TrP-4QRZlwoIXLBDQMpFHc1E64SgGJI-KG3Dj7GgK7sQv9a-C4ZlHtL5Z-lcm-pPFrqoZsD1CDiPzBWQirOxS9WY2WL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method</title><source>IEEE Electronic Library (IEL)</source><creator>Regulski, P. ; Vilchis-Rodriguez, D. S. ; Djurovic, S. ; Terzija, V.</creator><creatorcontrib>Regulski, P. ; Vilchis-Rodriguez, D. S. ; Djurovic, S. ; Terzija, V.</creatorcontrib><description>Power system loads are one of the crucial elements of modern power systems and, as such, must be properly modelled in stability studies. However, the static and dynamic characteristics of a load are commonly unknown, extremely nonlinear, and are usually time varying. Consequently, a measurement-based approach for determining the load characteristics would offer a significant advantage since it could update the parameters of load models directly from the available system measurements. For this purpose and in order to accurately determine load model parameters, a suitable parameter estimation method must be applied. The conventional approach to this problem favors the use of standard nonlinear estimators or artificial intelligence (AI)-based methods. In this paper, a new solution for determining the unknown load model parameters is proposed-an improved particle swarm optimization (IPSO) method. The proposed method is an AI-type technique similar to the commonly used genetic algorithms (GAs) and is shown to provide a promising alternative. This paper presents a performance comparison of IPSO and GA using computer simulations and measured data obtained from realistic laboratory experiments.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2014.2301219</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Composite load (CL) model ; Computational modeling ; Estimation ; Load modeling ; Mathematical model ; nonlinear parameter estimation ; particle swarm optimization (PSO) ; Power system dynamics ; Power system stability ; Reactive power</subject><ispartof>IEEE transactions on power delivery, 2015-04, Vol.30 (2), p.553-560</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-7a50ffad9d282fdb3452fefadd209bdc557a5a3a68733532a104372fc13fb30e3</citedby><cites>FETCH-LOGICAL-c407t-7a50ffad9d282fdb3452fefadd209bdc557a5a3a68733532a104372fc13fb30e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6734722$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6734722$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Regulski, P.</creatorcontrib><creatorcontrib>Vilchis-Rodriguez, D. S.</creatorcontrib><creatorcontrib>Djurovic, S.</creatorcontrib><creatorcontrib>Terzija, V.</creatorcontrib><title>Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Power system loads are one of the crucial elements of modern power systems and, as such, must be properly modelled in stability studies. However, the static and dynamic characteristics of a load are commonly unknown, extremely nonlinear, and are usually time varying. Consequently, a measurement-based approach for determining the load characteristics would offer a significant advantage since it could update the parameters of load models directly from the available system measurements. For this purpose and in order to accurately determine load model parameters, a suitable parameter estimation method must be applied. The conventional approach to this problem favors the use of standard nonlinear estimators or artificial intelligence (AI)-based methods. In this paper, a new solution for determining the unknown load model parameters is proposed-an improved particle swarm optimization (IPSO) method. The proposed method is an AI-type technique similar to the commonly used genetic algorithms (GAs) and is shown to provide a promising alternative. This paper presents a performance comparison of IPSO and GA using computer simulations and measured data obtained from realistic laboratory experiments.</description><subject>Composite load (CL) model</subject><subject>Computational modeling</subject><subject>Estimation</subject><subject>Load modeling</subject><subject>Mathematical model</subject><subject>nonlinear parameter estimation</subject><subject>particle swarm optimization (PSO)</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Reactive power</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1KAzEQRoMoWKsvoDd5ga2Tn202l1KrFlpatMXLJbuZ6Eq3WZKg6NO7tcWrgZnvfDCHkGsGI8ZA365Xr8_3Iw5MjrgAxpk-IQOmhcokh-KUDKAo8qzQSp2Tixg_AECChgGppjE1rUmN31Hv6MS3nY9NQjr3xtKFt7ilKxNMiwlDpJvY7N6o2dFZ2wX_iXZ_TE29RfryZUJLl11f1_wcCheY3r29JGfObCNeHeeQbB6m68lTNl8-ziZ386yWoFKmTA7OGastL7izlZA5d9gvLAdd2TrP-4QRZlwoIXLBDQMpFHc1E64SgGJI-KG3Dj7GgK7sQv9a-C4ZlHtL5Z-lcm-pPFrqoZsD1CDiPzBWQirOxS9WY2WL</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Regulski, P.</creator><creator>Vilchis-Rodriguez, D. S.</creator><creator>Djurovic, S.</creator><creator>Terzija, V.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method</title><author>Regulski, P. ; Vilchis-Rodriguez, D. S. ; Djurovic, S. ; Terzija, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-7a50ffad9d282fdb3452fefadd209bdc557a5a3a68733532a104372fc13fb30e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Composite load (CL) model</topic><topic>Computational modeling</topic><topic>Estimation</topic><topic>Load modeling</topic><topic>Mathematical model</topic><topic>nonlinear parameter estimation</topic><topic>particle swarm optimization (PSO)</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Reactive power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Regulski, P.</creatorcontrib><creatorcontrib>Vilchis-Rodriguez, D. S.</creatorcontrib><creatorcontrib>Djurovic, S.</creatorcontrib><creatorcontrib>Terzija, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Regulski, P.</au><au>Vilchis-Rodriguez, D. S.</au><au>Djurovic, S.</au><au>Terzija, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>30</volume><issue>2</issue><spage>553</spage><epage>560</epage><pages>553-560</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Power system loads are one of the crucial elements of modern power systems and, as such, must be properly modelled in stability studies. However, the static and dynamic characteristics of a load are commonly unknown, extremely nonlinear, and are usually time varying. Consequently, a measurement-based approach for determining the load characteristics would offer a significant advantage since it could update the parameters of load models directly from the available system measurements. For this purpose and in order to accurately determine load model parameters, a suitable parameter estimation method must be applied. The conventional approach to this problem favors the use of standard nonlinear estimators or artificial intelligence (AI)-based methods. In this paper, a new solution for determining the unknown load model parameters is proposed-an improved particle swarm optimization (IPSO) method. The proposed method is an AI-type technique similar to the commonly used genetic algorithms (GAs) and is shown to provide a promising alternative. This paper presents a performance comparison of IPSO and GA using computer simulations and measured data obtained from realistic laboratory experiments.</abstract><pub>IEEE</pub><doi>10.1109/TPWRD.2014.2301219</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 2015-04, Vol.30 (2), p.553-560 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_ieee_primary_6734722 |
source | IEEE Electronic Library (IEL) |
subjects | Composite load (CL) model Computational modeling Estimation Load modeling Mathematical model nonlinear parameter estimation particle swarm optimization (PSO) Power system dynamics Power system stability Reactive power |
title | Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Composite%20Load%20Model%20Parameters%20Using%20an%20Improved%20Particle%20Swarm%20Optimization%20Method&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Regulski,%20P.&rft.date=2015-04-01&rft.volume=30&rft.issue=2&rft.spage=553&rft.epage=560&rft.pages=553-560&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2014.2301219&rft_dat=%3Ccrossref_RIE%3E10_1109_TPWRD_2014_2301219%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6734722&rfr_iscdi=true |