Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method

Power system loads are one of the crucial elements of modern power systems and, as such, must be properly modelled in stability studies. However, the static and dynamic characteristics of a load are commonly unknown, extremely nonlinear, and are usually time varying. Consequently, a measurement-base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2015-04, Vol.30 (2), p.553-560
Hauptverfasser: Regulski, P., Vilchis-Rodriguez, D. S., Djurovic, S., Terzija, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue 2
container_start_page 553
container_title IEEE transactions on power delivery
container_volume 30
creator Regulski, P.
Vilchis-Rodriguez, D. S.
Djurovic, S.
Terzija, V.
description Power system loads are one of the crucial elements of modern power systems and, as such, must be properly modelled in stability studies. However, the static and dynamic characteristics of a load are commonly unknown, extremely nonlinear, and are usually time varying. Consequently, a measurement-based approach for determining the load characteristics would offer a significant advantage since it could update the parameters of load models directly from the available system measurements. For this purpose and in order to accurately determine load model parameters, a suitable parameter estimation method must be applied. The conventional approach to this problem favors the use of standard nonlinear estimators or artificial intelligence (AI)-based methods. In this paper, a new solution for determining the unknown load model parameters is proposed-an improved particle swarm optimization (IPSO) method. The proposed method is an AI-type technique similar to the commonly used genetic algorithms (GAs) and is shown to provide a promising alternative. This paper presents a performance comparison of IPSO and GA using computer simulations and measured data obtained from realistic laboratory experiments.
doi_str_mv 10.1109/TPWRD.2014.2301219
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6734722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6734722</ieee_id><sourcerecordid>10_1109_TPWRD_2014_2301219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-7a50ffad9d282fdb3452fefadd209bdc557a5a3a68733532a104372fc13fb30e3</originalsourceid><addsrcrecordid>eNo9kN1KAzEQRoMoWKsvoDd5ga2Tn202l1KrFlpatMXLJbuZ6Eq3WZKg6NO7tcWrgZnvfDCHkGsGI8ZA365Xr8_3Iw5MjrgAxpk-IQOmhcokh-KUDKAo8qzQSp2Tixg_AECChgGppjE1rUmN31Hv6MS3nY9NQjr3xtKFt7ilKxNMiwlDpJvY7N6o2dFZ2wX_iXZ_TE29RfryZUJLl11f1_wcCheY3r29JGfObCNeHeeQbB6m68lTNl8-ziZ386yWoFKmTA7OGastL7izlZA5d9gvLAdd2TrP-4QRZlwoIXLBDQMpFHc1E64SgGJI-KG3Dj7GgK7sQv9a-C4ZlHtL5Z-lcm-pPFrqoZsD1CDiPzBWQirOxS9WY2WL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method</title><source>IEEE Electronic Library (IEL)</source><creator>Regulski, P. ; Vilchis-Rodriguez, D. S. ; Djurovic, S. ; Terzija, V.</creator><creatorcontrib>Regulski, P. ; Vilchis-Rodriguez, D. S. ; Djurovic, S. ; Terzija, V.</creatorcontrib><description>Power system loads are one of the crucial elements of modern power systems and, as such, must be properly modelled in stability studies. However, the static and dynamic characteristics of a load are commonly unknown, extremely nonlinear, and are usually time varying. Consequently, a measurement-based approach for determining the load characteristics would offer a significant advantage since it could update the parameters of load models directly from the available system measurements. For this purpose and in order to accurately determine load model parameters, a suitable parameter estimation method must be applied. The conventional approach to this problem favors the use of standard nonlinear estimators or artificial intelligence (AI)-based methods. In this paper, a new solution for determining the unknown load model parameters is proposed-an improved particle swarm optimization (IPSO) method. The proposed method is an AI-type technique similar to the commonly used genetic algorithms (GAs) and is shown to provide a promising alternative. This paper presents a performance comparison of IPSO and GA using computer simulations and measured data obtained from realistic laboratory experiments.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2014.2301219</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Composite load (CL) model ; Computational modeling ; Estimation ; Load modeling ; Mathematical model ; nonlinear parameter estimation ; particle swarm optimization (PSO) ; Power system dynamics ; Power system stability ; Reactive power</subject><ispartof>IEEE transactions on power delivery, 2015-04, Vol.30 (2), p.553-560</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-7a50ffad9d282fdb3452fefadd209bdc557a5a3a68733532a104372fc13fb30e3</citedby><cites>FETCH-LOGICAL-c407t-7a50ffad9d282fdb3452fefadd209bdc557a5a3a68733532a104372fc13fb30e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6734722$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6734722$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Regulski, P.</creatorcontrib><creatorcontrib>Vilchis-Rodriguez, D. S.</creatorcontrib><creatorcontrib>Djurovic, S.</creatorcontrib><creatorcontrib>Terzija, V.</creatorcontrib><title>Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Power system loads are one of the crucial elements of modern power systems and, as such, must be properly modelled in stability studies. However, the static and dynamic characteristics of a load are commonly unknown, extremely nonlinear, and are usually time varying. Consequently, a measurement-based approach for determining the load characteristics would offer a significant advantage since it could update the parameters of load models directly from the available system measurements. For this purpose and in order to accurately determine load model parameters, a suitable parameter estimation method must be applied. The conventional approach to this problem favors the use of standard nonlinear estimators or artificial intelligence (AI)-based methods. In this paper, a new solution for determining the unknown load model parameters is proposed-an improved particle swarm optimization (IPSO) method. The proposed method is an AI-type technique similar to the commonly used genetic algorithms (GAs) and is shown to provide a promising alternative. This paper presents a performance comparison of IPSO and GA using computer simulations and measured data obtained from realistic laboratory experiments.</description><subject>Composite load (CL) model</subject><subject>Computational modeling</subject><subject>Estimation</subject><subject>Load modeling</subject><subject>Mathematical model</subject><subject>nonlinear parameter estimation</subject><subject>particle swarm optimization (PSO)</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Reactive power</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1KAzEQRoMoWKsvoDd5ga2Tn202l1KrFlpatMXLJbuZ6Eq3WZKg6NO7tcWrgZnvfDCHkGsGI8ZA365Xr8_3Iw5MjrgAxpk-IQOmhcokh-KUDKAo8qzQSp2Tixg_AECChgGppjE1rUmN31Hv6MS3nY9NQjr3xtKFt7ilKxNMiwlDpJvY7N6o2dFZ2wX_iXZ_TE29RfryZUJLl11f1_wcCheY3r29JGfObCNeHeeQbB6m68lTNl8-ziZ386yWoFKmTA7OGastL7izlZA5d9gvLAdd2TrP-4QRZlwoIXLBDQMpFHc1E64SgGJI-KG3Dj7GgK7sQv9a-C4ZlHtL5Z-lcm-pPFrqoZsD1CDiPzBWQirOxS9WY2WL</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Regulski, P.</creator><creator>Vilchis-Rodriguez, D. S.</creator><creator>Djurovic, S.</creator><creator>Terzija, V.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method</title><author>Regulski, P. ; Vilchis-Rodriguez, D. S. ; Djurovic, S. ; Terzija, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-7a50ffad9d282fdb3452fefadd209bdc557a5a3a68733532a104372fc13fb30e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Composite load (CL) model</topic><topic>Computational modeling</topic><topic>Estimation</topic><topic>Load modeling</topic><topic>Mathematical model</topic><topic>nonlinear parameter estimation</topic><topic>particle swarm optimization (PSO)</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Reactive power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Regulski, P.</creatorcontrib><creatorcontrib>Vilchis-Rodriguez, D. S.</creatorcontrib><creatorcontrib>Djurovic, S.</creatorcontrib><creatorcontrib>Terzija, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Regulski, P.</au><au>Vilchis-Rodriguez, D. S.</au><au>Djurovic, S.</au><au>Terzija, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>30</volume><issue>2</issue><spage>553</spage><epage>560</epage><pages>553-560</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Power system loads are one of the crucial elements of modern power systems and, as such, must be properly modelled in stability studies. However, the static and dynamic characteristics of a load are commonly unknown, extremely nonlinear, and are usually time varying. Consequently, a measurement-based approach for determining the load characteristics would offer a significant advantage since it could update the parameters of load models directly from the available system measurements. For this purpose and in order to accurately determine load model parameters, a suitable parameter estimation method must be applied. The conventional approach to this problem favors the use of standard nonlinear estimators or artificial intelligence (AI)-based methods. In this paper, a new solution for determining the unknown load model parameters is proposed-an improved particle swarm optimization (IPSO) method. The proposed method is an AI-type technique similar to the commonly used genetic algorithms (GAs) and is shown to provide a promising alternative. This paper presents a performance comparison of IPSO and GA using computer simulations and measured data obtained from realistic laboratory experiments.</abstract><pub>IEEE</pub><doi>10.1109/TPWRD.2014.2301219</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2015-04, Vol.30 (2), p.553-560
issn 0885-8977
1937-4208
language eng
recordid cdi_ieee_primary_6734722
source IEEE Electronic Library (IEL)
subjects Composite load (CL) model
Computational modeling
Estimation
Load modeling
Mathematical model
nonlinear parameter estimation
particle swarm optimization (PSO)
Power system dynamics
Power system stability
Reactive power
title Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Composite%20Load%20Model%20Parameters%20Using%20an%20Improved%20Particle%20Swarm%20Optimization%20Method&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Regulski,%20P.&rft.date=2015-04-01&rft.volume=30&rft.issue=2&rft.spage=553&rft.epage=560&rft.pages=553-560&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2014.2301219&rft_dat=%3Ccrossref_RIE%3E10_1109_TPWRD_2014_2301219%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6734722&rfr_iscdi=true