Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model
Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details....
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2014-09, Vol.11 (9), p.1544-1548 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1548 |
---|---|
container_issue | 9 |
container_start_page | 1544 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 11 |
creator | Sziranyi, Tamas Shadaydeh, Maha |
description | Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details. We propose a multilayer fusion model for adaptive segmentation and change detection of optical remote sensing image series, where trajectory analysis or direct comparison is not applicable. Our method applies unsupervised or partly supervised clustering on a fused-image series by using cross-layer similarity measure, followed by multilayer Markov random field segmentation. The resulted label map is applied for the automatic training of single layers. After the segmentation of each single layer separately, changes are detected between single label maps. The significant benefit of the proposed method has been numerically validated on remotely sensed image series with ground-truth data. |
doi_str_mv | 10.1109/LGRS.2014.2300873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6730687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6730687</ieee_id><sourcerecordid>3249594711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-9bba27d8bb73aa0a1b464e5980a5704808556a1f2e1e8ac19a956186e3da78703</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFZ_gHgJeN46m81mN0ctthZahMaCt2XSTEpKk9Td5NB_b2KLp5lh3ps3fIw9CpgIAcnLcr5OJyGIaBJKAKPlFRsJpQwHpcX10EeKq8R837I77_cAYWSMHrFNSruK6hbbsqmDpgjWVDUtBSnVvqx3waLCHflg8zekZVUe0JXtia8IfeeIv6GnPJh1vrfz1XoWrJqcDvfspsCDp4dLHbPN7P1r-sGXn_PF9HXJt1LGLU-yDEOdmyzTEhFQZFEcUf8loNIQGTBKxSiKkAQZ3IoEExULE5PMURsNcsyez3ePrvnpyLd233Su7iOtUGAiCI0cVOKs2rrGe0eFPbqyQneyAuxAzw707EDPXuj1nqezpySif32sJcT9-hcX52ps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508402830</pqid></control><display><type>article</type><title>Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model</title><source>IEEE Electronic Library (IEL)</source><creator>Sziranyi, Tamas ; Shadaydeh, Maha</creator><creatorcontrib>Sziranyi, Tamas ; Shadaydeh, Maha</creatorcontrib><description>Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details. We propose a multilayer fusion model for adaptive segmentation and change detection of optical remote sensing image series, where trajectory analysis or direct comparison is not applicable. Our method applies unsupervised or partly supervised clustering on a fused-image series by using cross-layer similarity measure, followed by multilayer Markov random field segmentation. The resulted label map is applied for the automatic training of single layers. After the segmentation of each single layer separately, changes are detected between single label maps. The significant benefit of the proposed method has been numerically validated on remotely sensed image series with ground-truth data.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2014.2300873</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Change detection ; cluster reward algorithm ; fusion-Markov random field (MRF) ; Image color analysis ; Image segmentation ; Labeling ; Nonhomogeneous media ; Remote sensing ; similarity measure ; Training ; Vectors</subject><ispartof>IEEE geoscience and remote sensing letters, 2014-09, Vol.11 (9), p.1544-1548</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-9bba27d8bb73aa0a1b464e5980a5704808556a1f2e1e8ac19a956186e3da78703</citedby><cites>FETCH-LOGICAL-c336t-9bba27d8bb73aa0a1b464e5980a5704808556a1f2e1e8ac19a956186e3da78703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6730687$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6730687$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sziranyi, Tamas</creatorcontrib><creatorcontrib>Shadaydeh, Maha</creatorcontrib><title>Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details. We propose a multilayer fusion model for adaptive segmentation and change detection of optical remote sensing image series, where trajectory analysis or direct comparison is not applicable. Our method applies unsupervised or partly supervised clustering on a fused-image series by using cross-layer similarity measure, followed by multilayer Markov random field segmentation. The resulted label map is applied for the automatic training of single layers. After the segmentation of each single layer separately, changes are detected between single label maps. The significant benefit of the proposed method has been numerically validated on remotely sensed image series with ground-truth data.</description><subject>Change detection</subject><subject>cluster reward algorithm</subject><subject>fusion-Markov random field (MRF)</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>Nonhomogeneous media</subject><subject>Remote sensing</subject><subject>similarity measure</subject><subject>Training</subject><subject>Vectors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsFZ_gHgJeN46m81mN0ctthZahMaCt2XSTEpKk9Td5NB_b2KLp5lh3ps3fIw9CpgIAcnLcr5OJyGIaBJKAKPlFRsJpQwHpcX10EeKq8R837I77_cAYWSMHrFNSruK6hbbsqmDpgjWVDUtBSnVvqx3waLCHflg8zekZVUe0JXtia8IfeeIv6GnPJh1vrfz1XoWrJqcDvfspsCDp4dLHbPN7P1r-sGXn_PF9HXJt1LGLU-yDEOdmyzTEhFQZFEcUf8loNIQGTBKxSiKkAQZ3IoEExULE5PMURsNcsyez3ePrvnpyLd233Su7iOtUGAiCI0cVOKs2rrGe0eFPbqyQneyAuxAzw707EDPXuj1nqezpySif32sJcT9-hcX52ps</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Sziranyi, Tamas</creator><creator>Shadaydeh, Maha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model</title><author>Sziranyi, Tamas ; Shadaydeh, Maha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-9bba27d8bb73aa0a1b464e5980a5704808556a1f2e1e8ac19a956186e3da78703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Change detection</topic><topic>cluster reward algorithm</topic><topic>fusion-Markov random field (MRF)</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>Nonhomogeneous media</topic><topic>Remote sensing</topic><topic>similarity measure</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sziranyi, Tamas</creatorcontrib><creatorcontrib>Shadaydeh, Maha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sziranyi, Tamas</au><au>Shadaydeh, Maha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>11</volume><issue>9</issue><spage>1544</spage><epage>1548</epage><pages>1544-1548</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details. We propose a multilayer fusion model for adaptive segmentation and change detection of optical remote sensing image series, where trajectory analysis or direct comparison is not applicable. Our method applies unsupervised or partly supervised clustering on a fused-image series by using cross-layer similarity measure, followed by multilayer Markov random field segmentation. The resulted label map is applied for the automatic training of single layers. After the segmentation of each single layer separately, changes are detected between single label maps. The significant benefit of the proposed method has been numerically validated on remotely sensed image series with ground-truth data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2014.2300873</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2014-09, Vol.11 (9), p.1544-1548 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_6730687 |
source | IEEE Electronic Library (IEL) |
subjects | Change detection cluster reward algorithm fusion-Markov random field (MRF) Image color analysis Image segmentation Labeling Nonhomogeneous media Remote sensing similarity measure Training Vectors |
title | Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20Remote%20Sensing%20Images%20Using%20Similarity-Measure-Based%20Fusion-MRF%20Model&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Sziranyi,%20Tamas&rft.date=2014-09-01&rft.volume=11&rft.issue=9&rft.spage=1544&rft.epage=1548&rft.pages=1544-1548&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2014.2300873&rft_dat=%3Cproquest_RIE%3E3249594711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508402830&rft_id=info:pmid/&rft_ieee_id=6730687&rfr_iscdi=true |