Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model

Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2014-09, Vol.11 (9), p.1544-1548
Hauptverfasser: Sziranyi, Tamas, Shadaydeh, Maha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1548
container_issue 9
container_start_page 1544
container_title IEEE geoscience and remote sensing letters
container_volume 11
creator Sziranyi, Tamas
Shadaydeh, Maha
description Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details. We propose a multilayer fusion model for adaptive segmentation and change detection of optical remote sensing image series, where trajectory analysis or direct comparison is not applicable. Our method applies unsupervised or partly supervised clustering on a fused-image series by using cross-layer similarity measure, followed by multilayer Markov random field segmentation. The resulted label map is applied for the automatic training of single layers. After the segmentation of each single layer separately, changes are detected between single label maps. The significant benefit of the proposed method has been numerically validated on remotely sensed image series with ground-truth data.
doi_str_mv 10.1109/LGRS.2014.2300873
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6730687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6730687</ieee_id><sourcerecordid>3249594711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-9bba27d8bb73aa0a1b464e5980a5704808556a1f2e1e8ac19a956186e3da78703</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFZ_gHgJeN46m81mN0ctthZahMaCt2XSTEpKk9Td5NB_b2KLp5lh3ps3fIw9CpgIAcnLcr5OJyGIaBJKAKPlFRsJpQwHpcX10EeKq8R837I77_cAYWSMHrFNSruK6hbbsqmDpgjWVDUtBSnVvqx3waLCHflg8zekZVUe0JXtia8IfeeIv6GnPJh1vrfz1XoWrJqcDvfspsCDp4dLHbPN7P1r-sGXn_PF9HXJt1LGLU-yDEOdmyzTEhFQZFEcUf8loNIQGTBKxSiKkAQZ3IoEExULE5PMURsNcsyez3ePrvnpyLd233Su7iOtUGAiCI0cVOKs2rrGe0eFPbqyQneyAuxAzw707EDPXuj1nqezpySif32sJcT9-hcX52ps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508402830</pqid></control><display><type>article</type><title>Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model</title><source>IEEE Electronic Library (IEL)</source><creator>Sziranyi, Tamas ; Shadaydeh, Maha</creator><creatorcontrib>Sziranyi, Tamas ; Shadaydeh, Maha</creatorcontrib><description>Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details. We propose a multilayer fusion model for adaptive segmentation and change detection of optical remote sensing image series, where trajectory analysis or direct comparison is not applicable. Our method applies unsupervised or partly supervised clustering on a fused-image series by using cross-layer similarity measure, followed by multilayer Markov random field segmentation. The resulted label map is applied for the automatic training of single layers. After the segmentation of each single layer separately, changes are detected between single label maps. The significant benefit of the proposed method has been numerically validated on remotely sensed image series with ground-truth data.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2014.2300873</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Change detection ; cluster reward algorithm ; fusion-Markov random field (MRF) ; Image color analysis ; Image segmentation ; Labeling ; Nonhomogeneous media ; Remote sensing ; similarity measure ; Training ; Vectors</subject><ispartof>IEEE geoscience and remote sensing letters, 2014-09, Vol.11 (9), p.1544-1548</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-9bba27d8bb73aa0a1b464e5980a5704808556a1f2e1e8ac19a956186e3da78703</citedby><cites>FETCH-LOGICAL-c336t-9bba27d8bb73aa0a1b464e5980a5704808556a1f2e1e8ac19a956186e3da78703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6730687$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6730687$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sziranyi, Tamas</creatorcontrib><creatorcontrib>Shadaydeh, Maha</creatorcontrib><title>Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details. We propose a multilayer fusion model for adaptive segmentation and change detection of optical remote sensing image series, where trajectory analysis or direct comparison is not applicable. Our method applies unsupervised or partly supervised clustering on a fused-image series by using cross-layer similarity measure, followed by multilayer Markov random field segmentation. The resulted label map is applied for the automatic training of single layers. After the segmentation of each single layer separately, changes are detected between single label maps. The significant benefit of the proposed method has been numerically validated on remotely sensed image series with ground-truth data.</description><subject>Change detection</subject><subject>cluster reward algorithm</subject><subject>fusion-Markov random field (MRF)</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>Nonhomogeneous media</subject><subject>Remote sensing</subject><subject>similarity measure</subject><subject>Training</subject><subject>Vectors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsFZ_gHgJeN46m81mN0ctthZahMaCt2XSTEpKk9Td5NB_b2KLp5lh3ps3fIw9CpgIAcnLcr5OJyGIaBJKAKPlFRsJpQwHpcX10EeKq8R837I77_cAYWSMHrFNSruK6hbbsqmDpgjWVDUtBSnVvqx3waLCHflg8zekZVUe0JXtia8IfeeIv6GnPJh1vrfz1XoWrJqcDvfspsCDp4dLHbPN7P1r-sGXn_PF9HXJt1LGLU-yDEOdmyzTEhFQZFEcUf8loNIQGTBKxSiKkAQZ3IoEExULE5PMURsNcsyez3ePrvnpyLd233Su7iOtUGAiCI0cVOKs2rrGe0eFPbqyQneyAuxAzw707EDPXuj1nqezpySif32sJcT9-hcX52ps</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Sziranyi, Tamas</creator><creator>Shadaydeh, Maha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model</title><author>Sziranyi, Tamas ; Shadaydeh, Maha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-9bba27d8bb73aa0a1b464e5980a5704808556a1f2e1e8ac19a956186e3da78703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Change detection</topic><topic>cluster reward algorithm</topic><topic>fusion-Markov random field (MRF)</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>Nonhomogeneous media</topic><topic>Remote sensing</topic><topic>similarity measure</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sziranyi, Tamas</creatorcontrib><creatorcontrib>Shadaydeh, Maha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sziranyi, Tamas</au><au>Shadaydeh, Maha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>11</volume><issue>9</issue><spage>1544</spage><epage>1548</epage><pages>1544-1548</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details. We propose a multilayer fusion model for adaptive segmentation and change detection of optical remote sensing image series, where trajectory analysis or direct comparison is not applicable. Our method applies unsupervised or partly supervised clustering on a fused-image series by using cross-layer similarity measure, followed by multilayer Markov random field segmentation. The resulted label map is applied for the automatic training of single layers. After the segmentation of each single layer separately, changes are detected between single label maps. The significant benefit of the proposed method has been numerically validated on remotely sensed image series with ground-truth data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2014.2300873</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2014-09, Vol.11 (9), p.1544-1548
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_6730687
source IEEE Electronic Library (IEL)
subjects Change detection
cluster reward algorithm
fusion-Markov random field (MRF)
Image color analysis
Image segmentation
Labeling
Nonhomogeneous media
Remote sensing
similarity measure
Training
Vectors
title Segmentation of Remote Sensing Images Using Similarity-Measure-Based Fusion-MRF Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20Remote%20Sensing%20Images%20Using%20Similarity-Measure-Based%20Fusion-MRF%20Model&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Sziranyi,%20Tamas&rft.date=2014-09-01&rft.volume=11&rft.issue=9&rft.spage=1544&rft.epage=1548&rft.pages=1544-1548&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2014.2300873&rft_dat=%3Cproquest_RIE%3E3249594711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508402830&rft_id=info:pmid/&rft_ieee_id=6730687&rfr_iscdi=true