Lung cancer pathology discrimination techniques using time series analysis

The goal of this study is to discover, analyze, compare, and interpret diffused reflectance polarimetric signatures from lung cancer cells through time series analysis techniques, by using recently invented efficient polarimetric backscattering detection techniques. Specifically, different time seri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Farrahi, T., Giakos, G., Quang, T., Shrestha, S., Deshpande, A., Narayan, C., Karras, D. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue
container_start_page 79
container_title
container_volume
creator Farrahi, T.
Giakos, G.
Quang, T.
Shrestha, S.
Deshpande, A.
Narayan, C.
Karras, D. A.
description The goal of this study is to discover, analyze, compare, and interpret diffused reflectance polarimetric signatures from lung cancer cells through time series analysis techniques, by using recently invented efficient polarimetric backscattering detection techniques. Specifically, different time series analyses, relying on linear and generalized linear modeling, have been investigated, with special emphasis on the Granger test for the time series. The experimental results indicate that statistically enhanced discrimination between normal and different types of lung cancer cells and stages can be achieved based on the pairwise comparisons of the time series diffused reflectance signal intensities and depolarization properties of the cells.
doi_str_mv 10.1109/IST.2013.6729667
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6729667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6729667</ieee_id><sourcerecordid>6729667</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-96c0e7ef3851be02d4834e3967e12521b9250ffb4ef93e3e1d105140164e670d3</originalsourceid><addsrcrecordid>eNotkEtLw0AUhUdRMNbuBTf5A6n33nllllJ8VAIurOCuTJKbdiRNaiZZ9N9bsKsDB77DxxHiHmGBCO5x9bleEKBcGEvOGHshblEZK7V1-H0pEsolZYoUXYkEtc4zysHdiHmMPwCA1hitKBHvxdRt08p3FQ_pwY-7vu23x7QOsRrCPnR-DH2XjlztuvA7cUynGE7AGPacRh7CqfGdb48xxDtx3fg28vycM_H18rxevmXFx-tq-VRkgSAfM2cqYMuNzDWWDFSrXCqWzlhG0oSlIw1NUypunGTJWCNoVIBGsbFQy5l4-N8NzLw5nDT9cNycb5B_1pNPPw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lung cancer pathology discrimination techniques using time series analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Farrahi, T. ; Giakos, G. ; Quang, T. ; Shrestha, S. ; Deshpande, A. ; Narayan, C. ; Karras, D. A.</creator><creatorcontrib>Farrahi, T. ; Giakos, G. ; Quang, T. ; Shrestha, S. ; Deshpande, A. ; Narayan, C. ; Karras, D. A.</creatorcontrib><description>The goal of this study is to discover, analyze, compare, and interpret diffused reflectance polarimetric signatures from lung cancer cells through time series analysis techniques, by using recently invented efficient polarimetric backscattering detection techniques. Specifically, different time series analyses, relying on linear and generalized linear modeling, have been investigated, with special emphasis on the Granger test for the time series. The experimental results indicate that statistically enhanced discrimination between normal and different types of lung cancer cells and stages can be achieved based on the pairwise comparisons of the time series diffused reflectance signal intensities and depolarization properties of the cells.</description><identifier>ISSN: 1558-2809</identifier><identifier>EISSN: 2832-4242</identifier><identifier>EISBN: 146735791X</identifier><identifier>EISBN: 9781467357913</identifier><identifier>EISBN: 9781467357906</identifier><identifier>EISBN: 1467357901</identifier><identifier>DOI: 10.1109/IST.2013.6729667</identifier><language>eng</language><publisher>IEEE</publisher><subject>adenocarcinoma ; Autoregressive processes ; Cancer ; Correlation ; correlation analysis ; Histograms ; lung cancer detection ; Lungs ; medical diagnostic techniques ; mixture of cancer cells ; Reflectivity ; squamous carcinoma ; Time series analysis ; time series analysis of polarimetric signals</subject><ispartof>2013 IEEE International Conference on Imaging Systems and Techniques (IST), 2013, p.79-84</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6729667$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6729667$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Farrahi, T.</creatorcontrib><creatorcontrib>Giakos, G.</creatorcontrib><creatorcontrib>Quang, T.</creatorcontrib><creatorcontrib>Shrestha, S.</creatorcontrib><creatorcontrib>Deshpande, A.</creatorcontrib><creatorcontrib>Narayan, C.</creatorcontrib><creatorcontrib>Karras, D. A.</creatorcontrib><title>Lung cancer pathology discrimination techniques using time series analysis</title><title>2013 IEEE International Conference on Imaging Systems and Techniques (IST)</title><addtitle>IST</addtitle><description>The goal of this study is to discover, analyze, compare, and interpret diffused reflectance polarimetric signatures from lung cancer cells through time series analysis techniques, by using recently invented efficient polarimetric backscattering detection techniques. Specifically, different time series analyses, relying on linear and generalized linear modeling, have been investigated, with special emphasis on the Granger test for the time series. The experimental results indicate that statistically enhanced discrimination between normal and different types of lung cancer cells and stages can be achieved based on the pairwise comparisons of the time series diffused reflectance signal intensities and depolarization properties of the cells.</description><subject>adenocarcinoma</subject><subject>Autoregressive processes</subject><subject>Cancer</subject><subject>Correlation</subject><subject>correlation analysis</subject><subject>Histograms</subject><subject>lung cancer detection</subject><subject>Lungs</subject><subject>medical diagnostic techniques</subject><subject>mixture of cancer cells</subject><subject>Reflectivity</subject><subject>squamous carcinoma</subject><subject>Time series analysis</subject><subject>time series analysis of polarimetric signals</subject><issn>1558-2809</issn><issn>2832-4242</issn><isbn>146735791X</isbn><isbn>9781467357913</isbn><isbn>9781467357906</isbn><isbn>1467357901</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtLw0AUhUdRMNbuBTf5A6n33nllllJ8VAIurOCuTJKbdiRNaiZZ9N9bsKsDB77DxxHiHmGBCO5x9bleEKBcGEvOGHshblEZK7V1-H0pEsolZYoUXYkEtc4zysHdiHmMPwCA1hitKBHvxdRt08p3FQ_pwY-7vu23x7QOsRrCPnR-DH2XjlztuvA7cUynGE7AGPacRh7CqfGdb48xxDtx3fg28vycM_H18rxevmXFx-tq-VRkgSAfM2cqYMuNzDWWDFSrXCqWzlhG0oSlIw1NUypunGTJWCNoVIBGsbFQy5l4-N8NzLw5nDT9cNycb5B_1pNPPw</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Farrahi, T.</creator><creator>Giakos, G.</creator><creator>Quang, T.</creator><creator>Shrestha, S.</creator><creator>Deshpande, A.</creator><creator>Narayan, C.</creator><creator>Karras, D. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20131001</creationdate><title>Lung cancer pathology discrimination techniques using time series analysis</title><author>Farrahi, T. ; Giakos, G. ; Quang, T. ; Shrestha, S. ; Deshpande, A. ; Narayan, C. ; Karras, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-96c0e7ef3851be02d4834e3967e12521b9250ffb4ef93e3e1d105140164e670d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adenocarcinoma</topic><topic>Autoregressive processes</topic><topic>Cancer</topic><topic>Correlation</topic><topic>correlation analysis</topic><topic>Histograms</topic><topic>lung cancer detection</topic><topic>Lungs</topic><topic>medical diagnostic techniques</topic><topic>mixture of cancer cells</topic><topic>Reflectivity</topic><topic>squamous carcinoma</topic><topic>Time series analysis</topic><topic>time series analysis of polarimetric signals</topic><toplevel>online_resources</toplevel><creatorcontrib>Farrahi, T.</creatorcontrib><creatorcontrib>Giakos, G.</creatorcontrib><creatorcontrib>Quang, T.</creatorcontrib><creatorcontrib>Shrestha, S.</creatorcontrib><creatorcontrib>Deshpande, A.</creatorcontrib><creatorcontrib>Narayan, C.</creatorcontrib><creatorcontrib>Karras, D. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farrahi, T.</au><au>Giakos, G.</au><au>Quang, T.</au><au>Shrestha, S.</au><au>Deshpande, A.</au><au>Narayan, C.</au><au>Karras, D. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lung cancer pathology discrimination techniques using time series analysis</atitle><btitle>2013 IEEE International Conference on Imaging Systems and Techniques (IST)</btitle><stitle>IST</stitle><date>2013-10-01</date><risdate>2013</risdate><spage>79</spage><epage>84</epage><pages>79-84</pages><issn>1558-2809</issn><eissn>2832-4242</eissn><eisbn>146735791X</eisbn><eisbn>9781467357913</eisbn><eisbn>9781467357906</eisbn><eisbn>1467357901</eisbn><abstract>The goal of this study is to discover, analyze, compare, and interpret diffused reflectance polarimetric signatures from lung cancer cells through time series analysis techniques, by using recently invented efficient polarimetric backscattering detection techniques. Specifically, different time series analyses, relying on linear and generalized linear modeling, have been investigated, with special emphasis on the Granger test for the time series. The experimental results indicate that statistically enhanced discrimination between normal and different types of lung cancer cells and stages can be achieved based on the pairwise comparisons of the time series diffused reflectance signal intensities and depolarization properties of the cells.</abstract><pub>IEEE</pub><doi>10.1109/IST.2013.6729667</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1558-2809
ispartof 2013 IEEE International Conference on Imaging Systems and Techniques (IST), 2013, p.79-84
issn 1558-2809
2832-4242
language eng
recordid cdi_ieee_primary_6729667
source IEEE Electronic Library (IEL) Conference Proceedings
subjects adenocarcinoma
Autoregressive processes
Cancer
Correlation
correlation analysis
Histograms
lung cancer detection
Lungs
medical diagnostic techniques
mixture of cancer cells
Reflectivity
squamous carcinoma
Time series analysis
time series analysis of polarimetric signals
title Lung cancer pathology discrimination techniques using time series analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lung%20cancer%20pathology%20discrimination%20techniques%20using%20time%20series%20analysis&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Imaging%20Systems%20and%20Techniques%20(IST)&rft.au=Farrahi,%20T.&rft.date=2013-10-01&rft.spage=79&rft.epage=84&rft.pages=79-84&rft.issn=1558-2809&rft.eissn=2832-4242&rft_id=info:doi/10.1109/IST.2013.6729667&rft_dat=%3Cieee_6IE%3E6729667%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146735791X&rft.eisbn_list=9781467357913&rft.eisbn_list=9781467357906&rft.eisbn_list=1467357901&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6729667&rfr_iscdi=true