Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs

This paper investigates the modeling of brushless permanent-magnet synchronous machines (PMSMs). The focus is on deriving an automatable process for obtaining dynamic motor models that take nonlinear effects, such as saturation, into account. The modeling is based on finite element (FE) simulations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2014-11, Vol.61 (11), p.6454-6462
Hauptverfasser: Bramerdorfer, Gerd, Winkler, Stephan M., Kommenda, Michael, Weidenholzer, Guenther, Silber, Siegfried, Kronberger, Gabriel, Affenzeller, Michael, Amrhein, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6462
container_issue 11
container_start_page 6454
container_title IEEE transactions on industrial electronics (1982)
container_volume 61
creator Bramerdorfer, Gerd
Winkler, Stephan M.
Kommenda, Michael
Weidenholzer, Guenther
Silber, Siegfried
Kronberger, Gabriel
Affenzeller, Michael
Amrhein, Wolfgang
description This paper investigates the modeling of brushless permanent-magnet synchronous machines (PMSMs). The focus is on deriving an automatable process for obtaining dynamic motor models that take nonlinear effects, such as saturation, into account. The modeling is based on finite element (FE) simulations for different current vectors in thedq plane over a full electrical period. The parameters obtained are the stator flux in terms of the direct and quadrature components and the air-gap torque, both modeled as functions of the rotor angle and the current vector. The data are preprocessed according to theoretical results on potential harmonics in the targets as functions of the rotor angle. A variety of modeling strategies were explored: linear regression, support vector machines, symbolic regression using genetic programming, random forests, and artificial neural networks. The motor models were optimized for each training technique, and their accuracy was then compared based on the initially available FE data and further FE simulations for additional current vectors. Artificial neural networks and symbolic regression using genetic programming achieved the highest accuracy, particularly with additional test data.
doi_str_mv 10.1109/TIE.2014.2303785
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6729026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6729026</ieee_id><sourcerecordid>3377913281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1225427d63af02e2ca9154b9a2c1c76db4fed04d5d13b547bf9b926ede45ceb53</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujifixN3HTxPVg22ln6FIQlATUBFg3nfaNlAytTosJ_95BiKu3Offel4PQHSV9Sol8XE7HfUYo77Oc5OVAnKEeFaLMpOSDc9QjrBxkhPDiEl3FuCEdKajoIb-Kzn_iyRiPdGN2jU4u-Ii1t_hZJ50NdQSLF_uYYIunFnxytTN_FF6CWXv3vYOIU8DzYKHBaQ34LfjGedAtHsJa_7jQ4lDjj_liHm_QRa2bCLene41Wk_Fy9JrN3l-mo6dZZpikKaOMCc5KW-S6JgyY0ZIKXknNDDVlYStegyXcCkvzSvCyqmUlWQEWuDBQifwaPRx7v9pweDCpTdi1vptUXVFBaE6l7ChypEwbYmyhVl-t2-p2ryhRB6uqs6oOVtXJahe5P0YcAPzjRckkYUX-C2-JczI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546013199</pqid></control><display><type>article</type><title>Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs</title><source>IEEE Electronic Library (IEL)</source><creator>Bramerdorfer, Gerd ; Winkler, Stephan M. ; Kommenda, Michael ; Weidenholzer, Guenther ; Silber, Siegfried ; Kronberger, Gabriel ; Affenzeller, Michael ; Amrhein, Wolfgang</creator><creatorcontrib>Bramerdorfer, Gerd ; Winkler, Stephan M. ; Kommenda, Michael ; Weidenholzer, Guenther ; Silber, Siegfried ; Kronberger, Gabriel ; Affenzeller, Michael ; Amrhein, Wolfgang</creatorcontrib><description>This paper investigates the modeling of brushless permanent-magnet synchronous machines (PMSMs). The focus is on deriving an automatable process for obtaining dynamic motor models that take nonlinear effects, such as saturation, into account. The modeling is based on finite element (FE) simulations for different current vectors in thedq plane over a full electrical period. The parameters obtained are the stator flux in terms of the direct and quadrature components and the air-gap torque, both modeled as functions of the rotor angle and the current vector. The data are preprocessed according to theoretical results on potential harmonics in the targets as functions of the rotor angle. A variety of modeling strategies were explored: linear regression, support vector machines, symbolic regression using genetic programming, random forests, and artificial neural networks. The motor models were optimized for each training technique, and their accuracy was then compared based on the initially available FE data and further FE simulations for additional current vectors. Artificial neural networks and symbolic regression using genetic programming achieved the highest accuracy, particularly with additional test data.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2014.2303785</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; artifical neural network ; Brushless machine ; cogging torque ; field-oriented control ; Finite element analysis ; genetic programming ; Iron ; modeling ; Neural networks ; permanent magnet ; Permanent magnet motors ; random forests ; Rotors ; Stators ; symbolic regression ; Torque ; torque ripple ; Vectors</subject><ispartof>IEEE transactions on industrial electronics (1982), 2014-11, Vol.61 (11), p.6454-6462</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1225427d63af02e2ca9154b9a2c1c76db4fed04d5d13b547bf9b926ede45ceb53</citedby><cites>FETCH-LOGICAL-c291t-1225427d63af02e2ca9154b9a2c1c76db4fed04d5d13b547bf9b926ede45ceb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6729026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6729026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bramerdorfer, Gerd</creatorcontrib><creatorcontrib>Winkler, Stephan M.</creatorcontrib><creatorcontrib>Kommenda, Michael</creatorcontrib><creatorcontrib>Weidenholzer, Guenther</creatorcontrib><creatorcontrib>Silber, Siegfried</creatorcontrib><creatorcontrib>Kronberger, Gabriel</creatorcontrib><creatorcontrib>Affenzeller, Michael</creatorcontrib><creatorcontrib>Amrhein, Wolfgang</creatorcontrib><title>Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper investigates the modeling of brushless permanent-magnet synchronous machines (PMSMs). The focus is on deriving an automatable process for obtaining dynamic motor models that take nonlinear effects, such as saturation, into account. The modeling is based on finite element (FE) simulations for different current vectors in thedq plane over a full electrical period. The parameters obtained are the stator flux in terms of the direct and quadrature components and the air-gap torque, both modeled as functions of the rotor angle and the current vector. The data are preprocessed according to theoretical results on potential harmonics in the targets as functions of the rotor angle. A variety of modeling strategies were explored: linear regression, support vector machines, symbolic regression using genetic programming, random forests, and artificial neural networks. The motor models were optimized for each training technique, and their accuracy was then compared based on the initially available FE data and further FE simulations for additional current vectors. Artificial neural networks and symbolic regression using genetic programming achieved the highest accuracy, particularly with additional test data.</description><subject>Analytical models</subject><subject>artifical neural network</subject><subject>Brushless machine</subject><subject>cogging torque</subject><subject>field-oriented control</subject><subject>Finite element analysis</subject><subject>genetic programming</subject><subject>Iron</subject><subject>modeling</subject><subject>Neural networks</subject><subject>permanent magnet</subject><subject>Permanent magnet motors</subject><subject>random forests</subject><subject>Rotors</subject><subject>Stators</subject><subject>symbolic regression</subject><subject>Torque</subject><subject>torque ripple</subject><subject>Vectors</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEURRujifixN3HTxPVg22ln6FIQlATUBFg3nfaNlAytTosJ_95BiKu3Offel4PQHSV9Sol8XE7HfUYo77Oc5OVAnKEeFaLMpOSDc9QjrBxkhPDiEl3FuCEdKajoIb-Kzn_iyRiPdGN2jU4u-Ii1t_hZJ50NdQSLF_uYYIunFnxytTN_FF6CWXv3vYOIU8DzYKHBaQ34LfjGedAtHsJa_7jQ4lDjj_liHm_QRa2bCLene41Wk_Fy9JrN3l-mo6dZZpikKaOMCc5KW-S6JgyY0ZIKXknNDDVlYStegyXcCkvzSvCyqmUlWQEWuDBQifwaPRx7v9pweDCpTdi1vptUXVFBaE6l7ChypEwbYmyhVl-t2-p2ryhRB6uqs6oOVtXJahe5P0YcAPzjRckkYUX-C2-JczI</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Bramerdorfer, Gerd</creator><creator>Winkler, Stephan M.</creator><creator>Kommenda, Michael</creator><creator>Weidenholzer, Guenther</creator><creator>Silber, Siegfried</creator><creator>Kronberger, Gabriel</creator><creator>Affenzeller, Michael</creator><creator>Amrhein, Wolfgang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs</title><author>Bramerdorfer, Gerd ; Winkler, Stephan M. ; Kommenda, Michael ; Weidenholzer, Guenther ; Silber, Siegfried ; Kronberger, Gabriel ; Affenzeller, Michael ; Amrhein, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1225427d63af02e2ca9154b9a2c1c76db4fed04d5d13b547bf9b926ede45ceb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical models</topic><topic>artifical neural network</topic><topic>Brushless machine</topic><topic>cogging torque</topic><topic>field-oriented control</topic><topic>Finite element analysis</topic><topic>genetic programming</topic><topic>Iron</topic><topic>modeling</topic><topic>Neural networks</topic><topic>permanent magnet</topic><topic>Permanent magnet motors</topic><topic>random forests</topic><topic>Rotors</topic><topic>Stators</topic><topic>symbolic regression</topic><topic>Torque</topic><topic>torque ripple</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bramerdorfer, Gerd</creatorcontrib><creatorcontrib>Winkler, Stephan M.</creatorcontrib><creatorcontrib>Kommenda, Michael</creatorcontrib><creatorcontrib>Weidenholzer, Guenther</creatorcontrib><creatorcontrib>Silber, Siegfried</creatorcontrib><creatorcontrib>Kronberger, Gabriel</creatorcontrib><creatorcontrib>Affenzeller, Michael</creatorcontrib><creatorcontrib>Amrhein, Wolfgang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bramerdorfer, Gerd</au><au>Winkler, Stephan M.</au><au>Kommenda, Michael</au><au>Weidenholzer, Guenther</au><au>Silber, Siegfried</au><au>Kronberger, Gabriel</au><au>Affenzeller, Michael</au><au>Amrhein, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>61</volume><issue>11</issue><spage>6454</spage><epage>6462</epage><pages>6454-6462</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper investigates the modeling of brushless permanent-magnet synchronous machines (PMSMs). The focus is on deriving an automatable process for obtaining dynamic motor models that take nonlinear effects, such as saturation, into account. The modeling is based on finite element (FE) simulations for different current vectors in thedq plane over a full electrical period. The parameters obtained are the stator flux in terms of the direct and quadrature components and the air-gap torque, both modeled as functions of the rotor angle and the current vector. The data are preprocessed according to theoretical results on potential harmonics in the targets as functions of the rotor angle. A variety of modeling strategies were explored: linear regression, support vector machines, symbolic regression using genetic programming, random forests, and artificial neural networks. The motor models were optimized for each training technique, and their accuracy was then compared based on the initially available FE data and further FE simulations for additional current vectors. Artificial neural networks and symbolic regression using genetic programming achieved the highest accuracy, particularly with additional test data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2014.2303785</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2014-11, Vol.61 (11), p.6454-6462
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_6729026
source IEEE Electronic Library (IEL)
subjects Analytical models
artifical neural network
Brushless machine
cogging torque
field-oriented control
Finite element analysis
genetic programming
Iron
modeling
Neural networks
permanent magnet
Permanent magnet motors
random forests
Rotors
Stators
symbolic regression
Torque
torque ripple
Vectors
title Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20FE%20Calculations%20and%20Data-Based%20System%20Identification%20Techniques%20to%20Model%20the%20Nonlinear%20Behavior%20of%20PMSMs&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Bramerdorfer,%20Gerd&rft.date=2014-11-01&rft.volume=61&rft.issue=11&rft.spage=6454&rft.epage=6462&rft.pages=6454-6462&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2014.2303785&rft_dat=%3Cproquest_RIE%3E3377913281%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546013199&rft_id=info:pmid/&rft_ieee_id=6729026&rfr_iscdi=true