Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs
This paper investigates the modeling of brushless permanent-magnet synchronous machines (PMSMs). The focus is on deriving an automatable process for obtaining dynamic motor models that take nonlinear effects, such as saturation, into account. The modeling is based on finite element (FE) simulations...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2014-11, Vol.61 (11), p.6454-6462 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6462 |
---|---|
container_issue | 11 |
container_start_page | 6454 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 61 |
creator | Bramerdorfer, Gerd Winkler, Stephan M. Kommenda, Michael Weidenholzer, Guenther Silber, Siegfried Kronberger, Gabriel Affenzeller, Michael Amrhein, Wolfgang |
description | This paper investigates the modeling of brushless permanent-magnet synchronous machines (PMSMs). The focus is on deriving an automatable process for obtaining dynamic motor models that take nonlinear effects, such as saturation, into account. The modeling is based on finite element (FE) simulations for different current vectors in thedq plane over a full electrical period. The parameters obtained are the stator flux in terms of the direct and quadrature components and the air-gap torque, both modeled as functions of the rotor angle and the current vector. The data are preprocessed according to theoretical results on potential harmonics in the targets as functions of the rotor angle. A variety of modeling strategies were explored: linear regression, support vector machines, symbolic regression using genetic programming, random forests, and artificial neural networks. The motor models were optimized for each training technique, and their accuracy was then compared based on the initially available FE data and further FE simulations for additional current vectors. Artificial neural networks and symbolic regression using genetic programming achieved the highest accuracy, particularly with additional test data. |
doi_str_mv | 10.1109/TIE.2014.2303785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6729026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6729026</ieee_id><sourcerecordid>3377913281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1225427d63af02e2ca9154b9a2c1c76db4fed04d5d13b547bf9b926ede45ceb53</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujifixN3HTxPVg22ln6FIQlATUBFg3nfaNlAytTosJ_95BiKu3Offel4PQHSV9Sol8XE7HfUYo77Oc5OVAnKEeFaLMpOSDc9QjrBxkhPDiEl3FuCEdKajoIb-Kzn_iyRiPdGN2jU4u-Ii1t_hZJ50NdQSLF_uYYIunFnxytTN_FF6CWXv3vYOIU8DzYKHBaQ34LfjGedAtHsJa_7jQ4lDjj_liHm_QRa2bCLene41Wk_Fy9JrN3l-mo6dZZpikKaOMCc5KW-S6JgyY0ZIKXknNDDVlYStegyXcCkvzSvCyqmUlWQEWuDBQifwaPRx7v9pweDCpTdi1vptUXVFBaE6l7ChypEwbYmyhVl-t2-p2ryhRB6uqs6oOVtXJahe5P0YcAPzjRckkYUX-C2-JczI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546013199</pqid></control><display><type>article</type><title>Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs</title><source>IEEE Electronic Library (IEL)</source><creator>Bramerdorfer, Gerd ; Winkler, Stephan M. ; Kommenda, Michael ; Weidenholzer, Guenther ; Silber, Siegfried ; Kronberger, Gabriel ; Affenzeller, Michael ; Amrhein, Wolfgang</creator><creatorcontrib>Bramerdorfer, Gerd ; Winkler, Stephan M. ; Kommenda, Michael ; Weidenholzer, Guenther ; Silber, Siegfried ; Kronberger, Gabriel ; Affenzeller, Michael ; Amrhein, Wolfgang</creatorcontrib><description>This paper investigates the modeling of brushless permanent-magnet synchronous machines (PMSMs). The focus is on deriving an automatable process for obtaining dynamic motor models that take nonlinear effects, such as saturation, into account. The modeling is based on finite element (FE) simulations for different current vectors in thedq plane over a full electrical period. The parameters obtained are the stator flux in terms of the direct and quadrature components and the air-gap torque, both modeled as functions of the rotor angle and the current vector. The data are preprocessed according to theoretical results on potential harmonics in the targets as functions of the rotor angle. A variety of modeling strategies were explored: linear regression, support vector machines, symbolic regression using genetic programming, random forests, and artificial neural networks. The motor models were optimized for each training technique, and their accuracy was then compared based on the initially available FE data and further FE simulations for additional current vectors. Artificial neural networks and symbolic regression using genetic programming achieved the highest accuracy, particularly with additional test data.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2014.2303785</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; artifical neural network ; Brushless machine ; cogging torque ; field-oriented control ; Finite element analysis ; genetic programming ; Iron ; modeling ; Neural networks ; permanent magnet ; Permanent magnet motors ; random forests ; Rotors ; Stators ; symbolic regression ; Torque ; torque ripple ; Vectors</subject><ispartof>IEEE transactions on industrial electronics (1982), 2014-11, Vol.61 (11), p.6454-6462</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1225427d63af02e2ca9154b9a2c1c76db4fed04d5d13b547bf9b926ede45ceb53</citedby><cites>FETCH-LOGICAL-c291t-1225427d63af02e2ca9154b9a2c1c76db4fed04d5d13b547bf9b926ede45ceb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6729026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6729026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bramerdorfer, Gerd</creatorcontrib><creatorcontrib>Winkler, Stephan M.</creatorcontrib><creatorcontrib>Kommenda, Michael</creatorcontrib><creatorcontrib>Weidenholzer, Guenther</creatorcontrib><creatorcontrib>Silber, Siegfried</creatorcontrib><creatorcontrib>Kronberger, Gabriel</creatorcontrib><creatorcontrib>Affenzeller, Michael</creatorcontrib><creatorcontrib>Amrhein, Wolfgang</creatorcontrib><title>Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper investigates the modeling of brushless permanent-magnet synchronous machines (PMSMs). The focus is on deriving an automatable process for obtaining dynamic motor models that take nonlinear effects, such as saturation, into account. The modeling is based on finite element (FE) simulations for different current vectors in thedq plane over a full electrical period. The parameters obtained are the stator flux in terms of the direct and quadrature components and the air-gap torque, both modeled as functions of the rotor angle and the current vector. The data are preprocessed according to theoretical results on potential harmonics in the targets as functions of the rotor angle. A variety of modeling strategies were explored: linear regression, support vector machines, symbolic regression using genetic programming, random forests, and artificial neural networks. The motor models were optimized for each training technique, and their accuracy was then compared based on the initially available FE data and further FE simulations for additional current vectors. Artificial neural networks and symbolic regression using genetic programming achieved the highest accuracy, particularly with additional test data.</description><subject>Analytical models</subject><subject>artifical neural network</subject><subject>Brushless machine</subject><subject>cogging torque</subject><subject>field-oriented control</subject><subject>Finite element analysis</subject><subject>genetic programming</subject><subject>Iron</subject><subject>modeling</subject><subject>Neural networks</subject><subject>permanent magnet</subject><subject>Permanent magnet motors</subject><subject>random forests</subject><subject>Rotors</subject><subject>Stators</subject><subject>symbolic regression</subject><subject>Torque</subject><subject>torque ripple</subject><subject>Vectors</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEURRujifixN3HTxPVg22ln6FIQlATUBFg3nfaNlAytTosJ_95BiKu3Offel4PQHSV9Sol8XE7HfUYo77Oc5OVAnKEeFaLMpOSDc9QjrBxkhPDiEl3FuCEdKajoIb-Kzn_iyRiPdGN2jU4u-Ii1t_hZJ50NdQSLF_uYYIunFnxytTN_FF6CWXv3vYOIU8DzYKHBaQ34LfjGedAtHsJa_7jQ4lDjj_liHm_QRa2bCLene41Wk_Fy9JrN3l-mo6dZZpikKaOMCc5KW-S6JgyY0ZIKXknNDDVlYStegyXcCkvzSvCyqmUlWQEWuDBQifwaPRx7v9pweDCpTdi1vptUXVFBaE6l7ChypEwbYmyhVl-t2-p2ryhRB6uqs6oOVtXJahe5P0YcAPzjRckkYUX-C2-JczI</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Bramerdorfer, Gerd</creator><creator>Winkler, Stephan M.</creator><creator>Kommenda, Michael</creator><creator>Weidenholzer, Guenther</creator><creator>Silber, Siegfried</creator><creator>Kronberger, Gabriel</creator><creator>Affenzeller, Michael</creator><creator>Amrhein, Wolfgang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs</title><author>Bramerdorfer, Gerd ; Winkler, Stephan M. ; Kommenda, Michael ; Weidenholzer, Guenther ; Silber, Siegfried ; Kronberger, Gabriel ; Affenzeller, Michael ; Amrhein, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1225427d63af02e2ca9154b9a2c1c76db4fed04d5d13b547bf9b926ede45ceb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical models</topic><topic>artifical neural network</topic><topic>Brushless machine</topic><topic>cogging torque</topic><topic>field-oriented control</topic><topic>Finite element analysis</topic><topic>genetic programming</topic><topic>Iron</topic><topic>modeling</topic><topic>Neural networks</topic><topic>permanent magnet</topic><topic>Permanent magnet motors</topic><topic>random forests</topic><topic>Rotors</topic><topic>Stators</topic><topic>symbolic regression</topic><topic>Torque</topic><topic>torque ripple</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bramerdorfer, Gerd</creatorcontrib><creatorcontrib>Winkler, Stephan M.</creatorcontrib><creatorcontrib>Kommenda, Michael</creatorcontrib><creatorcontrib>Weidenholzer, Guenther</creatorcontrib><creatorcontrib>Silber, Siegfried</creatorcontrib><creatorcontrib>Kronberger, Gabriel</creatorcontrib><creatorcontrib>Affenzeller, Michael</creatorcontrib><creatorcontrib>Amrhein, Wolfgang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bramerdorfer, Gerd</au><au>Winkler, Stephan M.</au><au>Kommenda, Michael</au><au>Weidenholzer, Guenther</au><au>Silber, Siegfried</au><au>Kronberger, Gabriel</au><au>Affenzeller, Michael</au><au>Amrhein, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>61</volume><issue>11</issue><spage>6454</spage><epage>6462</epage><pages>6454-6462</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper investigates the modeling of brushless permanent-magnet synchronous machines (PMSMs). The focus is on deriving an automatable process for obtaining dynamic motor models that take nonlinear effects, such as saturation, into account. The modeling is based on finite element (FE) simulations for different current vectors in thedq plane over a full electrical period. The parameters obtained are the stator flux in terms of the direct and quadrature components and the air-gap torque, both modeled as functions of the rotor angle and the current vector. The data are preprocessed according to theoretical results on potential harmonics in the targets as functions of the rotor angle. A variety of modeling strategies were explored: linear regression, support vector machines, symbolic regression using genetic programming, random forests, and artificial neural networks. The motor models were optimized for each training technique, and their accuracy was then compared based on the initially available FE data and further FE simulations for additional current vectors. Artificial neural networks and symbolic regression using genetic programming achieved the highest accuracy, particularly with additional test data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2014.2303785</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2014-11, Vol.61 (11), p.6454-6462 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_6729026 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models artifical neural network Brushless machine cogging torque field-oriented control Finite element analysis genetic programming Iron modeling Neural networks permanent magnet Permanent magnet motors random forests Rotors Stators symbolic regression Torque torque ripple Vectors |
title | Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20FE%20Calculations%20and%20Data-Based%20System%20Identification%20Techniques%20to%20Model%20the%20Nonlinear%20Behavior%20of%20PMSMs&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Bramerdorfer,%20Gerd&rft.date=2014-11-01&rft.volume=61&rft.issue=11&rft.spage=6454&rft.epage=6462&rft.pages=6454-6462&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2014.2303785&rft_dat=%3Cproquest_RIE%3E3377913281%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546013199&rft_id=info:pmid/&rft_ieee_id=6729026&rfr_iscdi=true |