Learning generic third-order MGRF texture models
Descriptive abilities of translation-invariant Markov-Gibbs random fields (MGRF), common in texture modelling, are expected to increase if higher-order interactions, i.e. conditional dependencies between larger numbers of pixels, are taken into account. But the complexity of modelling grows as well,...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 7 |
container_title | |
container_volume | |
creator | Versteegen, Ralph Gimel'farb, Georgy Riddle, Patricia |
description | Descriptive abilities of translation-invariant Markov-Gibbs random fields (MGRF), common in texture modelling, are expected to increase if higher-order interactions, i.e. conditional dependencies between larger numbers of pixels, are taken into account. But the complexity of modelling grows as well, so that most of the recent high-order MGRFs are built to a large extent by hand. At the same time it is very difficult (if possible) to manually choose an efficient structure and strengths of pixel interactions for modelling a particular texture. This paper explores a possible extension of a computationally feasible framework for learning generic translation-invariant second-order MGRFs onto generic third-order models. Several information-theoretical heuristic methods for automatic learning of the latter are compared experimentally on a large and diverse database of realistic textures in application to a practically important problem of semi-supervised texture recognition and retrieval. However it is shown that better generative abilities of learnt models do not necessarily imply their higher discriminative power, and also the increased difficulty of learning third order order models may lead to worse generative performance. |
doi_str_mv | 10.1109/IVCNZ.2013.6726984 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6726984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6726984</ieee_id><sourcerecordid>6726984</sourcerecordid><originalsourceid>FETCH-LOGICAL-i252t-7a7eec5cc4f27e87c86ab9ff0b8d87547cc21a929771f86dea3acb8fbc290a093</originalsourceid><addsrcrecordid>eNo1j8tKxDAUQKMoOIz9Ad30B1rvTZreZCnFeUBVEHXhZkjTmzEy05G0gv69C8fVOasDR4grhBIR7M36tXl4KyWgKmuStTXVicgsGazIWjBG0amYSdRYSAn67N_R4oXIxvEDAJBIqwpmAlp2aYjDNt_ywCn6fHqPqS8OqeeU3y-fFvnE39NX4nx_6Hk3Xorz4HYjZ0fOxcvi7rlZFe3jct3ctkWUWk4FOWL22vsqSGJD3tSusyFAZ3pDuiLvJTorLREGU_fslPOdCZ2XFhxYNRfXf93IzJvPFPcu_WyOv-oXqOdHHw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning generic third-order MGRF texture models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Versteegen, Ralph ; Gimel'farb, Georgy ; Riddle, Patricia</creator><creatorcontrib>Versteegen, Ralph ; Gimel'farb, Georgy ; Riddle, Patricia</creatorcontrib><description>Descriptive abilities of translation-invariant Markov-Gibbs random fields (MGRF), common in texture modelling, are expected to increase if higher-order interactions, i.e. conditional dependencies between larger numbers of pixels, are taken into account. But the complexity of modelling grows as well, so that most of the recent high-order MGRFs are built to a large extent by hand. At the same time it is very difficult (if possible) to manually choose an efficient structure and strengths of pixel interactions for modelling a particular texture. This paper explores a possible extension of a computationally feasible framework for learning generic translation-invariant second-order MGRFs onto generic third-order models. Several information-theoretical heuristic methods for automatic learning of the latter are compared experimentally on a large and diverse database of realistic textures in application to a practically important problem of semi-supervised texture recognition and retrieval. However it is shown that better generative abilities of learnt models do not necessarily imply their higher discriminative power, and also the increased difficulty of learning third order order models may lead to worse generative performance.</description><identifier>ISSN: 2151-2191</identifier><identifier>EISSN: 2151-2205</identifier><identifier>EISBN: 9781479908837</identifier><identifier>EISBN: 1479908827</identifier><identifier>EISBN: 1479908835</identifier><identifier>EISBN: 9781479908820</identifier><identifier>DOI: 10.1109/IVCNZ.2013.6726984</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Computational modeling ; Mutual information ; Probability distribution ; Training ; Visualization</subject><ispartof>2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013), 2013, p.7-12</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6726984$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6726984$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Versteegen, Ralph</creatorcontrib><creatorcontrib>Gimel'farb, Georgy</creatorcontrib><creatorcontrib>Riddle, Patricia</creatorcontrib><title>Learning generic third-order MGRF texture models</title><title>2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013)</title><addtitle>IVCNZ</addtitle><description>Descriptive abilities of translation-invariant Markov-Gibbs random fields (MGRF), common in texture modelling, are expected to increase if higher-order interactions, i.e. conditional dependencies between larger numbers of pixels, are taken into account. But the complexity of modelling grows as well, so that most of the recent high-order MGRFs are built to a large extent by hand. At the same time it is very difficult (if possible) to manually choose an efficient structure and strengths of pixel interactions for modelling a particular texture. This paper explores a possible extension of a computationally feasible framework for learning generic translation-invariant second-order MGRFs onto generic third-order models. Several information-theoretical heuristic methods for automatic learning of the latter are compared experimentally on a large and diverse database of realistic textures in application to a practically important problem of semi-supervised texture recognition and retrieval. However it is shown that better generative abilities of learnt models do not necessarily imply their higher discriminative power, and also the increased difficulty of learning third order order models may lead to worse generative performance.</description><subject>Approximation methods</subject><subject>Computational modeling</subject><subject>Mutual information</subject><subject>Probability distribution</subject><subject>Training</subject><subject>Visualization</subject><issn>2151-2191</issn><issn>2151-2205</issn><isbn>9781479908837</isbn><isbn>1479908827</isbn><isbn>1479908835</isbn><isbn>9781479908820</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tKxDAUQKMoOIz9Ad30B1rvTZreZCnFeUBVEHXhZkjTmzEy05G0gv69C8fVOasDR4grhBIR7M36tXl4KyWgKmuStTXVicgsGazIWjBG0amYSdRYSAn67N_R4oXIxvEDAJBIqwpmAlp2aYjDNt_ywCn6fHqPqS8OqeeU3y-fFvnE39NX4nx_6Hk3Xorz4HYjZ0fOxcvi7rlZFe3jct3ctkWUWk4FOWL22vsqSGJD3tSusyFAZ3pDuiLvJTorLREGU_fslPOdCZ2XFhxYNRfXf93IzJvPFPcu_WyOv-oXqOdHHw</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Versteegen, Ralph</creator><creator>Gimel'farb, Georgy</creator><creator>Riddle, Patricia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20131101</creationdate><title>Learning generic third-order MGRF texture models</title><author>Versteegen, Ralph ; Gimel'farb, Georgy ; Riddle, Patricia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i252t-7a7eec5cc4f27e87c86ab9ff0b8d87547cc21a929771f86dea3acb8fbc290a093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation methods</topic><topic>Computational modeling</topic><topic>Mutual information</topic><topic>Probability distribution</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Versteegen, Ralph</creatorcontrib><creatorcontrib>Gimel'farb, Georgy</creatorcontrib><creatorcontrib>Riddle, Patricia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Versteegen, Ralph</au><au>Gimel'farb, Georgy</au><au>Riddle, Patricia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning generic third-order MGRF texture models</atitle><btitle>2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013)</btitle><stitle>IVCNZ</stitle><date>2013-11-01</date><risdate>2013</risdate><spage>7</spage><epage>12</epage><pages>7-12</pages><issn>2151-2191</issn><eissn>2151-2205</eissn><eisbn>9781479908837</eisbn><eisbn>1479908827</eisbn><eisbn>1479908835</eisbn><eisbn>9781479908820</eisbn><abstract>Descriptive abilities of translation-invariant Markov-Gibbs random fields (MGRF), common in texture modelling, are expected to increase if higher-order interactions, i.e. conditional dependencies between larger numbers of pixels, are taken into account. But the complexity of modelling grows as well, so that most of the recent high-order MGRFs are built to a large extent by hand. At the same time it is very difficult (if possible) to manually choose an efficient structure and strengths of pixel interactions for modelling a particular texture. This paper explores a possible extension of a computationally feasible framework for learning generic translation-invariant second-order MGRFs onto generic third-order models. Several information-theoretical heuristic methods for automatic learning of the latter are compared experimentally on a large and diverse database of realistic textures in application to a practically important problem of semi-supervised texture recognition and retrieval. However it is shown that better generative abilities of learnt models do not necessarily imply their higher discriminative power, and also the increased difficulty of learning third order order models may lead to worse generative performance.</abstract><pub>IEEE</pub><doi>10.1109/IVCNZ.2013.6726984</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2151-2191 |
ispartof | 2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013), 2013, p.7-12 |
issn | 2151-2191 2151-2205 |
language | eng |
recordid | cdi_ieee_primary_6726984 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods Computational modeling Mutual information Probability distribution Training Visualization |
title | Learning generic third-order MGRF texture models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20generic%20third-order%20MGRF%20texture%20models&rft.btitle=2013%2028th%20International%20Conference%20on%20Image%20and%20Vision%20Computing%20New%20Zealand%20(IVCNZ%202013)&rft.au=Versteegen,%20Ralph&rft.date=2013-11-01&rft.spage=7&rft.epage=12&rft.pages=7-12&rft.issn=2151-2191&rft.eissn=2151-2205&rft_id=info:doi/10.1109/IVCNZ.2013.6726984&rft_dat=%3Cieee_6IE%3E6726984%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479908837&rft.eisbn_list=1479908827&rft.eisbn_list=1479908835&rft.eisbn_list=9781479908820&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6726984&rfr_iscdi=true |