Learning generic third-order MGRF texture models

Descriptive abilities of translation-invariant Markov-Gibbs random fields (MGRF), common in texture modelling, are expected to increase if higher-order interactions, i.e. conditional dependencies between larger numbers of pixels, are taken into account. But the complexity of modelling grows as well,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Versteegen, Ralph, Gimel'farb, Georgy, Riddle, Patricia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 7
container_title
container_volume
creator Versteegen, Ralph
Gimel'farb, Georgy
Riddle, Patricia
description Descriptive abilities of translation-invariant Markov-Gibbs random fields (MGRF), common in texture modelling, are expected to increase if higher-order interactions, i.e. conditional dependencies between larger numbers of pixels, are taken into account. But the complexity of modelling grows as well, so that most of the recent high-order MGRFs are built to a large extent by hand. At the same time it is very difficult (if possible) to manually choose an efficient structure and strengths of pixel interactions for modelling a particular texture. This paper explores a possible extension of a computationally feasible framework for learning generic translation-invariant second-order MGRFs onto generic third-order models. Several information-theoretical heuristic methods for automatic learning of the latter are compared experimentally on a large and diverse database of realistic textures in application to a practically important problem of semi-supervised texture recognition and retrieval. However it is shown that better generative abilities of learnt models do not necessarily imply their higher discriminative power, and also the increased difficulty of learning third order order models may lead to worse generative performance.
doi_str_mv 10.1109/IVCNZ.2013.6726984
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6726984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6726984</ieee_id><sourcerecordid>6726984</sourcerecordid><originalsourceid>FETCH-LOGICAL-i252t-7a7eec5cc4f27e87c86ab9ff0b8d87547cc21a929771f86dea3acb8fbc290a093</originalsourceid><addsrcrecordid>eNo1j8tKxDAUQKMoOIz9Ad30B1rvTZreZCnFeUBVEHXhZkjTmzEy05G0gv69C8fVOasDR4grhBIR7M36tXl4KyWgKmuStTXVicgsGazIWjBG0amYSdRYSAn67N_R4oXIxvEDAJBIqwpmAlp2aYjDNt_ywCn6fHqPqS8OqeeU3y-fFvnE39NX4nx_6Hk3Xorz4HYjZ0fOxcvi7rlZFe3jct3ctkWUWk4FOWL22vsqSGJD3tSusyFAZ3pDuiLvJTorLREGU_fslPOdCZ2XFhxYNRfXf93IzJvPFPcu_WyOv-oXqOdHHw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning generic third-order MGRF texture models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Versteegen, Ralph ; Gimel'farb, Georgy ; Riddle, Patricia</creator><creatorcontrib>Versteegen, Ralph ; Gimel'farb, Georgy ; Riddle, Patricia</creatorcontrib><description>Descriptive abilities of translation-invariant Markov-Gibbs random fields (MGRF), common in texture modelling, are expected to increase if higher-order interactions, i.e. conditional dependencies between larger numbers of pixels, are taken into account. But the complexity of modelling grows as well, so that most of the recent high-order MGRFs are built to a large extent by hand. At the same time it is very difficult (if possible) to manually choose an efficient structure and strengths of pixel interactions for modelling a particular texture. This paper explores a possible extension of a computationally feasible framework for learning generic translation-invariant second-order MGRFs onto generic third-order models. Several information-theoretical heuristic methods for automatic learning of the latter are compared experimentally on a large and diverse database of realistic textures in application to a practically important problem of semi-supervised texture recognition and retrieval. However it is shown that better generative abilities of learnt models do not necessarily imply their higher discriminative power, and also the increased difficulty of learning third order order models may lead to worse generative performance.</description><identifier>ISSN: 2151-2191</identifier><identifier>EISSN: 2151-2205</identifier><identifier>EISBN: 9781479908837</identifier><identifier>EISBN: 1479908827</identifier><identifier>EISBN: 1479908835</identifier><identifier>EISBN: 9781479908820</identifier><identifier>DOI: 10.1109/IVCNZ.2013.6726984</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Computational modeling ; Mutual information ; Probability distribution ; Training ; Visualization</subject><ispartof>2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013), 2013, p.7-12</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6726984$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6726984$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Versteegen, Ralph</creatorcontrib><creatorcontrib>Gimel'farb, Georgy</creatorcontrib><creatorcontrib>Riddle, Patricia</creatorcontrib><title>Learning generic third-order MGRF texture models</title><title>2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013)</title><addtitle>IVCNZ</addtitle><description>Descriptive abilities of translation-invariant Markov-Gibbs random fields (MGRF), common in texture modelling, are expected to increase if higher-order interactions, i.e. conditional dependencies between larger numbers of pixels, are taken into account. But the complexity of modelling grows as well, so that most of the recent high-order MGRFs are built to a large extent by hand. At the same time it is very difficult (if possible) to manually choose an efficient structure and strengths of pixel interactions for modelling a particular texture. This paper explores a possible extension of a computationally feasible framework for learning generic translation-invariant second-order MGRFs onto generic third-order models. Several information-theoretical heuristic methods for automatic learning of the latter are compared experimentally on a large and diverse database of realistic textures in application to a practically important problem of semi-supervised texture recognition and retrieval. However it is shown that better generative abilities of learnt models do not necessarily imply their higher discriminative power, and also the increased difficulty of learning third order order models may lead to worse generative performance.</description><subject>Approximation methods</subject><subject>Computational modeling</subject><subject>Mutual information</subject><subject>Probability distribution</subject><subject>Training</subject><subject>Visualization</subject><issn>2151-2191</issn><issn>2151-2205</issn><isbn>9781479908837</isbn><isbn>1479908827</isbn><isbn>1479908835</isbn><isbn>9781479908820</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tKxDAUQKMoOIz9Ad30B1rvTZreZCnFeUBVEHXhZkjTmzEy05G0gv69C8fVOasDR4grhBIR7M36tXl4KyWgKmuStTXVicgsGazIWjBG0amYSdRYSAn67N_R4oXIxvEDAJBIqwpmAlp2aYjDNt_ywCn6fHqPqS8OqeeU3y-fFvnE39NX4nx_6Hk3Xorz4HYjZ0fOxcvi7rlZFe3jct3ctkWUWk4FOWL22vsqSGJD3tSusyFAZ3pDuiLvJTorLREGU_fslPOdCZ2XFhxYNRfXf93IzJvPFPcu_WyOv-oXqOdHHw</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Versteegen, Ralph</creator><creator>Gimel'farb, Georgy</creator><creator>Riddle, Patricia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20131101</creationdate><title>Learning generic third-order MGRF texture models</title><author>Versteegen, Ralph ; Gimel'farb, Georgy ; Riddle, Patricia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i252t-7a7eec5cc4f27e87c86ab9ff0b8d87547cc21a929771f86dea3acb8fbc290a093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation methods</topic><topic>Computational modeling</topic><topic>Mutual information</topic><topic>Probability distribution</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Versteegen, Ralph</creatorcontrib><creatorcontrib>Gimel'farb, Georgy</creatorcontrib><creatorcontrib>Riddle, Patricia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Versteegen, Ralph</au><au>Gimel'farb, Georgy</au><au>Riddle, Patricia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning generic third-order MGRF texture models</atitle><btitle>2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013)</btitle><stitle>IVCNZ</stitle><date>2013-11-01</date><risdate>2013</risdate><spage>7</spage><epage>12</epage><pages>7-12</pages><issn>2151-2191</issn><eissn>2151-2205</eissn><eisbn>9781479908837</eisbn><eisbn>1479908827</eisbn><eisbn>1479908835</eisbn><eisbn>9781479908820</eisbn><abstract>Descriptive abilities of translation-invariant Markov-Gibbs random fields (MGRF), common in texture modelling, are expected to increase if higher-order interactions, i.e. conditional dependencies between larger numbers of pixels, are taken into account. But the complexity of modelling grows as well, so that most of the recent high-order MGRFs are built to a large extent by hand. At the same time it is very difficult (if possible) to manually choose an efficient structure and strengths of pixel interactions for modelling a particular texture. This paper explores a possible extension of a computationally feasible framework for learning generic translation-invariant second-order MGRFs onto generic third-order models. Several information-theoretical heuristic methods for automatic learning of the latter are compared experimentally on a large and diverse database of realistic textures in application to a practically important problem of semi-supervised texture recognition and retrieval. However it is shown that better generative abilities of learnt models do not necessarily imply their higher discriminative power, and also the increased difficulty of learning third order order models may lead to worse generative performance.</abstract><pub>IEEE</pub><doi>10.1109/IVCNZ.2013.6726984</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-2191
ispartof 2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013), 2013, p.7-12
issn 2151-2191
2151-2205
language eng
recordid cdi_ieee_primary_6726984
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Computational modeling
Mutual information
Probability distribution
Training
Visualization
title Learning generic third-order MGRF texture models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20generic%20third-order%20MGRF%20texture%20models&rft.btitle=2013%2028th%20International%20Conference%20on%20Image%20and%20Vision%20Computing%20New%20Zealand%20(IVCNZ%202013)&rft.au=Versteegen,%20Ralph&rft.date=2013-11-01&rft.spage=7&rft.epage=12&rft.pages=7-12&rft.issn=2151-2191&rft.eissn=2151-2205&rft_id=info:doi/10.1109/IVCNZ.2013.6726984&rft_dat=%3Cieee_6IE%3E6726984%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479908837&rft.eisbn_list=1479908827&rft.eisbn_list=1479908835&rft.eisbn_list=9781479908820&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6726984&rfr_iscdi=true