A genetic algorithm for graph coloring using single parent conflict gene crossover and mutation with conflict gene removal procedure

Graph Coloring Problem, an NP-hard combinatorial optimization problem is widely applied in various engineering fields. This paper exhibits an improved genetic method which uses the single parent conflict-gene crossover and conflict-gene mutation operators along with the conflict-gene removal procedu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sethumadhavan, Gopalakrishnan, Marappan, Raja
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Sethumadhavan, Gopalakrishnan
Marappan, Raja
description Graph Coloring Problem, an NP-hard combinatorial optimization problem is widely applied in various engineering fields. This paper exhibits an improved genetic method which uses the single parent conflict-gene crossover and conflict-gene mutation operators along with the conflict-gene removal procedure to solve the graph coloring problem. These operators reduce the search space by minimizing the number of genetic generations to obtain the optimal solution. A fitness function based on number of conflicting edges, whose vertices assigned with same color has been defined for the initial and subsequent generations of gene sequences. This proposed genetic method is compared on some of the benchmark graphs and the results are found to be promising. The approximation methods that minimize the search space and also increase the percentage of successful runs are exhibited.
doi_str_mv 10.1109/ICCIC.2013.6724190
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6724190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6724190</ieee_id><sourcerecordid>6724190</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-d52ee65b1607caa6874e103233dcb072a8c940d00fad0f28eb909fead70e87bc3</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRY0QElDyA7DxD6SM7SSOl1XEo1IlNrCuHHuSGiVx5DhF7PlwWigbNmc0947OYgi5ZbBkDNT9uqrW1ZIDE8tC8owpOCOJkiXLpFIsV5Kfk-u_JZOXJJmmdwBgUua5FFfka0VbHDA6Q3XX-uDirqeND7QNetxR47tDNrR0no48okM66oBDPJRD0zkTfwzUBD9Nfo-B6sHSfo46Oj_Qj4Px32XA3u91R8fgDdo54A25aHQ3YXKaC_L2-PBaPaebl6d1tdqkjnERU5tzxCKvWQHSaF2UMkMGggthTQ2S69KoDCxAoy00vMRagWpQWwlYytqIBbn79TpE3I7B9Tp8bk-PE9-M_mVO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A genetic algorithm for graph coloring using single parent conflict gene crossover and mutation with conflict gene removal procedure</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sethumadhavan, Gopalakrishnan ; Marappan, Raja</creator><creatorcontrib>Sethumadhavan, Gopalakrishnan ; Marappan, Raja</creatorcontrib><description>Graph Coloring Problem, an NP-hard combinatorial optimization problem is widely applied in various engineering fields. This paper exhibits an improved genetic method which uses the single parent conflict-gene crossover and conflict-gene mutation operators along with the conflict-gene removal procedure to solve the graph coloring problem. These operators reduce the search space by minimizing the number of genetic generations to obtain the optimal solution. A fitness function based on number of conflicting edges, whose vertices assigned with same color has been defined for the initial and subsequent generations of gene sequences. This proposed genetic method is compared on some of the benchmark graphs and the results are found to be promising. The approximation methods that minimize the search space and also increase the percentage of successful runs are exhibited.</description><identifier>ISBN: 1479915947</identifier><identifier>ISBN: 9781479915941</identifier><identifier>EISBN: 9781479915972</identifier><identifier>EISBN: 9781479915958</identifier><identifier>EISBN: 1479915955</identifier><identifier>EISBN: 1479915971</identifier><identifier>DOI: 10.1109/ICCIC.2013.6724190</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Approximation methods ; Benchmark testing ; Chromatic number ; Color ; Genetic algorithm ; Genetic algorithms ; Genetics ; Graph Coloring ; NP-hard ; Sociology ; Statistics</subject><ispartof>2013 IEEE International Conference on Computational Intelligence and Computing Research, 2013, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6724190$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6724190$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sethumadhavan, Gopalakrishnan</creatorcontrib><creatorcontrib>Marappan, Raja</creatorcontrib><title>A genetic algorithm for graph coloring using single parent conflict gene crossover and mutation with conflict gene removal procedure</title><title>2013 IEEE International Conference on Computational Intelligence and Computing Research</title><addtitle>ICCIC</addtitle><description>Graph Coloring Problem, an NP-hard combinatorial optimization problem is widely applied in various engineering fields. This paper exhibits an improved genetic method which uses the single parent conflict-gene crossover and conflict-gene mutation operators along with the conflict-gene removal procedure to solve the graph coloring problem. These operators reduce the search space by minimizing the number of genetic generations to obtain the optimal solution. A fitness function based on number of conflicting edges, whose vertices assigned with same color has been defined for the initial and subsequent generations of gene sequences. This proposed genetic method is compared on some of the benchmark graphs and the results are found to be promising. The approximation methods that minimize the search space and also increase the percentage of successful runs are exhibited.</description><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Benchmark testing</subject><subject>Chromatic number</subject><subject>Color</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Graph Coloring</subject><subject>NP-hard</subject><subject>Sociology</subject><subject>Statistics</subject><isbn>1479915947</isbn><isbn>9781479915941</isbn><isbn>9781479915972</isbn><isbn>9781479915958</isbn><isbn>1479915955</isbn><isbn>1479915971</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRY0QElDyA7DxD6SM7SSOl1XEo1IlNrCuHHuSGiVx5DhF7PlwWigbNmc0947OYgi5ZbBkDNT9uqrW1ZIDE8tC8owpOCOJkiXLpFIsV5Kfk-u_JZOXJJmmdwBgUua5FFfka0VbHDA6Q3XX-uDirqeND7QNetxR47tDNrR0no48okM66oBDPJRD0zkTfwzUBD9Nfo-B6sHSfo46Oj_Qj4Px32XA3u91R8fgDdo54A25aHQ3YXKaC_L2-PBaPaebl6d1tdqkjnERU5tzxCKvWQHSaF2UMkMGggthTQ2S69KoDCxAoy00vMRagWpQWwlYytqIBbn79TpE3I7B9Tp8bk-PE9-M_mVO</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Sethumadhavan, Gopalakrishnan</creator><creator>Marappan, Raja</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20131201</creationdate><title>A genetic algorithm for graph coloring using single parent conflict gene crossover and mutation with conflict gene removal procedure</title><author>Sethumadhavan, Gopalakrishnan ; Marappan, Raja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-d52ee65b1607caa6874e103233dcb072a8c940d00fad0f28eb909fead70e87bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Benchmark testing</topic><topic>Chromatic number</topic><topic>Color</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Graph Coloring</topic><topic>NP-hard</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Sethumadhavan, Gopalakrishnan</creatorcontrib><creatorcontrib>Marappan, Raja</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sethumadhavan, Gopalakrishnan</au><au>Marappan, Raja</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A genetic algorithm for graph coloring using single parent conflict gene crossover and mutation with conflict gene removal procedure</atitle><btitle>2013 IEEE International Conference on Computational Intelligence and Computing Research</btitle><stitle>ICCIC</stitle><date>2013-12-01</date><risdate>2013</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1479915947</isbn><isbn>9781479915941</isbn><eisbn>9781479915972</eisbn><eisbn>9781479915958</eisbn><eisbn>1479915955</eisbn><eisbn>1479915971</eisbn><abstract>Graph Coloring Problem, an NP-hard combinatorial optimization problem is widely applied in various engineering fields. This paper exhibits an improved genetic method which uses the single parent conflict-gene crossover and conflict-gene mutation operators along with the conflict-gene removal procedure to solve the graph coloring problem. These operators reduce the search space by minimizing the number of genetic generations to obtain the optimal solution. A fitness function based on number of conflicting edges, whose vertices assigned with same color has been defined for the initial and subsequent generations of gene sequences. This proposed genetic method is compared on some of the benchmark graphs and the results are found to be promising. The approximation methods that minimize the search space and also increase the percentage of successful runs are exhibited.</abstract><pub>IEEE</pub><doi>10.1109/ICCIC.2013.6724190</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1479915947
ispartof 2013 IEEE International Conference on Computational Intelligence and Computing Research, 2013, p.1-6
issn
language eng
recordid cdi_ieee_primary_6724190
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Approximation methods
Benchmark testing
Chromatic number
Color
Genetic algorithm
Genetic algorithms
Genetics
Graph Coloring
NP-hard
Sociology
Statistics
title A genetic algorithm for graph coloring using single parent conflict gene crossover and mutation with conflict gene removal procedure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20genetic%20algorithm%20for%20graph%20coloring%20using%20single%20parent%20conflict%20gene%20crossover%20and%20mutation%20with%20conflict%20gene%20removal%20procedure&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Computational%20Intelligence%20and%20Computing%20Research&rft.au=Sethumadhavan,%20Gopalakrishnan&rft.date=2013-12-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1479915947&rft.isbn_list=9781479915941&rft_id=info:doi/10.1109/ICCIC.2013.6724190&rft_dat=%3Cieee_6IE%3E6724190%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479915972&rft.eisbn_list=9781479915958&rft.eisbn_list=1479915955&rft.eisbn_list=1479915971&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6724190&rfr_iscdi=true