Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals
The paper aims at evaluation of different onscreen keyboard layouts based on the biological responses of the users. The signal used for the said purpose is Electroencephalogram acquired by low cost neuro-headset from Emotiv. We propose to use human cognition as the fundamental feature to discriminat...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | |
container_start_page | 480 |
container_title | |
container_volume | |
creator | Sinharay, Arijit Chatterjee, Debatri Sinha, Aniruddha |
description | The paper aims at evaluation of different onscreen keyboard layouts based on the biological responses of the users. The signal used for the said purpose is Electroencephalogram acquired by low cost neuro-headset from Emotiv. We propose to use human cognition as the fundamental feature to discriminate between user-friendly vs. cumbersome onscreen layout designs. To validate our observations we compared our results with bench marked data based on user study and KLM-GOMS model. A classifier is first trained for high and low cognition tasks based on well-established cognitive tests (e.g. Stroop test) and then this classifier is used to report the cognition class for a particular onscreen layout. A high cognition load class indicates complexity in the layout design whereas a low cognition output indicates the layout to be user friendly. Present evaluation methods like user study or KLM-GOMS based model, serves as an indirect measure of goodness of layout designs. In contrast, our approach has a unique advantage as this is a direct measure of human's biological response subjected to stimuli (in our case onscreen keyboard layouts) hence more reliable. |
doi_str_mv | 10.1109/SMC.2013.88 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6721841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6721841</ieee_id><sourcerecordid>6721841</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-90fd3ad29a60583167fb9631bee073b7f2b88935287b2cf412e6f41401d3d3eb3</originalsourceid><addsrcrecordid>eNotzL1OwzAUQGGDQKItTIwsfoEE3-v4b0QhFERQh1KJrbKb68qoJChJkfL2VILlfNth7BZEDiDc_fqtzFGAzK09Y3MojHNCK8RzNkNlTAZaqQs2A6Exc4gfV2w-DJ9CoCjAzlhZ_fjD0Y-pa3kX-WOKkXpqR75qh11P1PJXmkLn-4bXfuqO48A3Q2r3vKqWfJ32rT8M1-wynqCbfxds81S9l89ZvVq-lA91lsCoMXMiNtI36LwWykrQJganJQQiYWQwEYO1Tiq0JuAuFoCkTy0ENLKRFOSC3f19ExFtv_v05ftpqw2CLUD-AodvSaY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sinharay, Arijit ; Chatterjee, Debatri ; Sinha, Aniruddha</creator><creatorcontrib>Sinharay, Arijit ; Chatterjee, Debatri ; Sinha, Aniruddha</creatorcontrib><description>The paper aims at evaluation of different onscreen keyboard layouts based on the biological responses of the users. The signal used for the said purpose is Electroencephalogram acquired by low cost neuro-headset from Emotiv. We propose to use human cognition as the fundamental feature to discriminate between user-friendly vs. cumbersome onscreen layout designs. To validate our observations we compared our results with bench marked data based on user study and KLM-GOMS model. A classifier is first trained for high and low cognition tasks based on well-established cognitive tests (e.g. Stroop test) and then this classifier is used to report the cognition class for a particular onscreen layout. A high cognition load class indicates complexity in the layout design whereas a low cognition output indicates the layout to be user friendly. Present evaluation methods like user study or KLM-GOMS based model, serves as an indirect measure of goodness of layout designs. In contrast, our approach has a unique advantage as this is a direct measure of human's biological response subjected to stimuli (in our case onscreen keyboard layouts) hence more reliable.</description><identifier>ISSN: 1062-922X</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1479906522</identifier><identifier>EISBN: 9781479906529</identifier><identifier>DOI: 10.1109/SMC.2013.88</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Cognition ; Cognitive load ; Electroencephalogram ; Electroencephalography ; keyboard layout evaluation ; Keyboards ; KLM-GOMS ; Layout ; Load modeling ; Training</subject><ispartof>2013 IEEE International Conference on Systems, Man, and Cybernetics, 2013, p.480-486</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6721841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6721841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sinharay, Arijit</creatorcontrib><creatorcontrib>Chatterjee, Debatri</creatorcontrib><creatorcontrib>Sinha, Aniruddha</creatorcontrib><title>Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals</title><title>2013 IEEE International Conference on Systems, Man, and Cybernetics</title><addtitle>smc</addtitle><description>The paper aims at evaluation of different onscreen keyboard layouts based on the biological responses of the users. The signal used for the said purpose is Electroencephalogram acquired by low cost neuro-headset from Emotiv. We propose to use human cognition as the fundamental feature to discriminate between user-friendly vs. cumbersome onscreen layout designs. To validate our observations we compared our results with bench marked data based on user study and KLM-GOMS model. A classifier is first trained for high and low cognition tasks based on well-established cognitive tests (e.g. Stroop test) and then this classifier is used to report the cognition class for a particular onscreen layout. A high cognition load class indicates complexity in the layout design whereas a low cognition output indicates the layout to be user friendly. Present evaluation methods like user study or KLM-GOMS based model, serves as an indirect measure of goodness of layout designs. In contrast, our approach has a unique advantage as this is a direct measure of human's biological response subjected to stimuli (in our case onscreen keyboard layouts) hence more reliable.</description><subject>Brain modeling</subject><subject>Cognition</subject><subject>Cognitive load</subject><subject>Electroencephalogram</subject><subject>Electroencephalography</subject><subject>keyboard layout evaluation</subject><subject>Keyboards</subject><subject>KLM-GOMS</subject><subject>Layout</subject><subject>Load modeling</subject><subject>Training</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>1479906522</isbn><isbn>9781479906529</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzL1OwzAUQGGDQKItTIwsfoEE3-v4b0QhFERQh1KJrbKb68qoJChJkfL2VILlfNth7BZEDiDc_fqtzFGAzK09Y3MojHNCK8RzNkNlTAZaqQs2A6Exc4gfV2w-DJ9CoCjAzlhZ_fjD0Y-pa3kX-WOKkXpqR75qh11P1PJXmkLn-4bXfuqO48A3Q2r3vKqWfJ32rT8M1-wynqCbfxds81S9l89ZvVq-lA91lsCoMXMiNtI36LwWykrQJganJQQiYWQwEYO1Tiq0JuAuFoCkTy0ENLKRFOSC3f19ExFtv_v05ftpqw2CLUD-AodvSaY</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Sinharay, Arijit</creator><creator>Chatterjee, Debatri</creator><creator>Sinha, Aniruddha</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201310</creationdate><title>Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals</title><author>Sinharay, Arijit ; Chatterjee, Debatri ; Sinha, Aniruddha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-90fd3ad29a60583167fb9631bee073b7f2b88935287b2cf412e6f41401d3d3eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Brain modeling</topic><topic>Cognition</topic><topic>Cognitive load</topic><topic>Electroencephalogram</topic><topic>Electroencephalography</topic><topic>keyboard layout evaluation</topic><topic>Keyboards</topic><topic>KLM-GOMS</topic><topic>Layout</topic><topic>Load modeling</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinharay, Arijit</creatorcontrib><creatorcontrib>Chatterjee, Debatri</creatorcontrib><creatorcontrib>Sinha, Aniruddha</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sinharay, Arijit</au><au>Chatterjee, Debatri</au><au>Sinha, Aniruddha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals</atitle><btitle>2013 IEEE International Conference on Systems, Man, and Cybernetics</btitle><stitle>smc</stitle><date>2013-10</date><risdate>2013</risdate><spage>480</spage><epage>486</epage><pages>480-486</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><eisbn>1479906522</eisbn><eisbn>9781479906529</eisbn><coden>IEEPAD</coden><abstract>The paper aims at evaluation of different onscreen keyboard layouts based on the biological responses of the users. The signal used for the said purpose is Electroencephalogram acquired by low cost neuro-headset from Emotiv. We propose to use human cognition as the fundamental feature to discriminate between user-friendly vs. cumbersome onscreen layout designs. To validate our observations we compared our results with bench marked data based on user study and KLM-GOMS model. A classifier is first trained for high and low cognition tasks based on well-established cognitive tests (e.g. Stroop test) and then this classifier is used to report the cognition class for a particular onscreen layout. A high cognition load class indicates complexity in the layout design whereas a low cognition output indicates the layout to be user friendly. Present evaluation methods like user study or KLM-GOMS based model, serves as an indirect measure of goodness of layout designs. In contrast, our approach has a unique advantage as this is a direct measure of human's biological response subjected to stimuli (in our case onscreen keyboard layouts) hence more reliable.</abstract><pub>IEEE</pub><doi>10.1109/SMC.2013.88</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | 2013 IEEE International Conference on Systems, Man, and Cybernetics, 2013, p.480-486 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_6721841 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Brain modeling Cognition Cognitive load Electroencephalogram Electroencephalography keyboard layout evaluation Keyboards KLM-GOMS Layout Load modeling Training |
title | Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluation%20of%20Different%20Onscreen%20Keyboard%20Layouts%20Using%20EEG%20Signals&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics&rft.au=Sinharay,%20Arijit&rft.date=2013-10&rft.spage=480&rft.epage=486&rft.pages=480-486&rft.issn=1062-922X&rft.eissn=2577-1655&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SMC.2013.88&rft_dat=%3Cieee_6IE%3E6721841%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479906522&rft.eisbn_list=9781479906529&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6721841&rfr_iscdi=true |