Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals

The paper aims at evaluation of different onscreen keyboard layouts based on the biological responses of the users. The signal used for the said purpose is Electroencephalogram acquired by low cost neuro-headset from Emotiv. We propose to use human cognition as the fundamental feature to discriminat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sinharay, Arijit, Chatterjee, Debatri, Sinha, Aniruddha
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue
container_start_page 480
container_title
container_volume
creator Sinharay, Arijit
Chatterjee, Debatri
Sinha, Aniruddha
description The paper aims at evaluation of different onscreen keyboard layouts based on the biological responses of the users. The signal used for the said purpose is Electroencephalogram acquired by low cost neuro-headset from Emotiv. We propose to use human cognition as the fundamental feature to discriminate between user-friendly vs. cumbersome onscreen layout designs. To validate our observations we compared our results with bench marked data based on user study and KLM-GOMS model. A classifier is first trained for high and low cognition tasks based on well-established cognitive tests (e.g. Stroop test) and then this classifier is used to report the cognition class for a particular onscreen layout. A high cognition load class indicates complexity in the layout design whereas a low cognition output indicates the layout to be user friendly. Present evaluation methods like user study or KLM-GOMS based model, serves as an indirect measure of goodness of layout designs. In contrast, our approach has a unique advantage as this is a direct measure of human's biological response subjected to stimuli (in our case onscreen keyboard layouts) hence more reliable.
doi_str_mv 10.1109/SMC.2013.88
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6721841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6721841</ieee_id><sourcerecordid>6721841</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-90fd3ad29a60583167fb9631bee073b7f2b88935287b2cf412e6f41401d3d3eb3</originalsourceid><addsrcrecordid>eNotzL1OwzAUQGGDQKItTIwsfoEE3-v4b0QhFERQh1KJrbKb68qoJChJkfL2VILlfNth7BZEDiDc_fqtzFGAzK09Y3MojHNCK8RzNkNlTAZaqQs2A6Exc4gfV2w-DJ9CoCjAzlhZ_fjD0Y-pa3kX-WOKkXpqR75qh11P1PJXmkLn-4bXfuqO48A3Q2r3vKqWfJ32rT8M1-wynqCbfxds81S9l89ZvVq-lA91lsCoMXMiNtI36LwWykrQJganJQQiYWQwEYO1Tiq0JuAuFoCkTy0ENLKRFOSC3f19ExFtv_v05ftpqw2CLUD-AodvSaY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sinharay, Arijit ; Chatterjee, Debatri ; Sinha, Aniruddha</creator><creatorcontrib>Sinharay, Arijit ; Chatterjee, Debatri ; Sinha, Aniruddha</creatorcontrib><description>The paper aims at evaluation of different onscreen keyboard layouts based on the biological responses of the users. The signal used for the said purpose is Electroencephalogram acquired by low cost neuro-headset from Emotiv. We propose to use human cognition as the fundamental feature to discriminate between user-friendly vs. cumbersome onscreen layout designs. To validate our observations we compared our results with bench marked data based on user study and KLM-GOMS model. A classifier is first trained for high and low cognition tasks based on well-established cognitive tests (e.g. Stroop test) and then this classifier is used to report the cognition class for a particular onscreen layout. A high cognition load class indicates complexity in the layout design whereas a low cognition output indicates the layout to be user friendly. Present evaluation methods like user study or KLM-GOMS based model, serves as an indirect measure of goodness of layout designs. In contrast, our approach has a unique advantage as this is a direct measure of human's biological response subjected to stimuli (in our case onscreen keyboard layouts) hence more reliable.</description><identifier>ISSN: 1062-922X</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1479906522</identifier><identifier>EISBN: 9781479906529</identifier><identifier>DOI: 10.1109/SMC.2013.88</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain modeling ; Cognition ; Cognitive load ; Electroencephalogram ; Electroencephalography ; keyboard layout evaluation ; Keyboards ; KLM-GOMS ; Layout ; Load modeling ; Training</subject><ispartof>2013 IEEE International Conference on Systems, Man, and Cybernetics, 2013, p.480-486</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6721841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6721841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sinharay, Arijit</creatorcontrib><creatorcontrib>Chatterjee, Debatri</creatorcontrib><creatorcontrib>Sinha, Aniruddha</creatorcontrib><title>Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals</title><title>2013 IEEE International Conference on Systems, Man, and Cybernetics</title><addtitle>smc</addtitle><description>The paper aims at evaluation of different onscreen keyboard layouts based on the biological responses of the users. The signal used for the said purpose is Electroencephalogram acquired by low cost neuro-headset from Emotiv. We propose to use human cognition as the fundamental feature to discriminate between user-friendly vs. cumbersome onscreen layout designs. To validate our observations we compared our results with bench marked data based on user study and KLM-GOMS model. A classifier is first trained for high and low cognition tasks based on well-established cognitive tests (e.g. Stroop test) and then this classifier is used to report the cognition class for a particular onscreen layout. A high cognition load class indicates complexity in the layout design whereas a low cognition output indicates the layout to be user friendly. Present evaluation methods like user study or KLM-GOMS based model, serves as an indirect measure of goodness of layout designs. In contrast, our approach has a unique advantage as this is a direct measure of human's biological response subjected to stimuli (in our case onscreen keyboard layouts) hence more reliable.</description><subject>Brain modeling</subject><subject>Cognition</subject><subject>Cognitive load</subject><subject>Electroencephalogram</subject><subject>Electroencephalography</subject><subject>keyboard layout evaluation</subject><subject>Keyboards</subject><subject>KLM-GOMS</subject><subject>Layout</subject><subject>Load modeling</subject><subject>Training</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>1479906522</isbn><isbn>9781479906529</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzL1OwzAUQGGDQKItTIwsfoEE3-v4b0QhFERQh1KJrbKb68qoJChJkfL2VILlfNth7BZEDiDc_fqtzFGAzK09Y3MojHNCK8RzNkNlTAZaqQs2A6Exc4gfV2w-DJ9CoCjAzlhZ_fjD0Y-pa3kX-WOKkXpqR75qh11P1PJXmkLn-4bXfuqO48A3Q2r3vKqWfJ32rT8M1-wynqCbfxds81S9l89ZvVq-lA91lsCoMXMiNtI36LwWykrQJganJQQiYWQwEYO1Tiq0JuAuFoCkTy0ENLKRFOSC3f19ExFtv_v05ftpqw2CLUD-AodvSaY</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Sinharay, Arijit</creator><creator>Chatterjee, Debatri</creator><creator>Sinha, Aniruddha</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201310</creationdate><title>Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals</title><author>Sinharay, Arijit ; Chatterjee, Debatri ; Sinha, Aniruddha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-90fd3ad29a60583167fb9631bee073b7f2b88935287b2cf412e6f41401d3d3eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Brain modeling</topic><topic>Cognition</topic><topic>Cognitive load</topic><topic>Electroencephalogram</topic><topic>Electroencephalography</topic><topic>keyboard layout evaluation</topic><topic>Keyboards</topic><topic>KLM-GOMS</topic><topic>Layout</topic><topic>Load modeling</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinharay, Arijit</creatorcontrib><creatorcontrib>Chatterjee, Debatri</creatorcontrib><creatorcontrib>Sinha, Aniruddha</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sinharay, Arijit</au><au>Chatterjee, Debatri</au><au>Sinha, Aniruddha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals</atitle><btitle>2013 IEEE International Conference on Systems, Man, and Cybernetics</btitle><stitle>smc</stitle><date>2013-10</date><risdate>2013</risdate><spage>480</spage><epage>486</epage><pages>480-486</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><eisbn>1479906522</eisbn><eisbn>9781479906529</eisbn><coden>IEEPAD</coden><abstract>The paper aims at evaluation of different onscreen keyboard layouts based on the biological responses of the users. The signal used for the said purpose is Electroencephalogram acquired by low cost neuro-headset from Emotiv. We propose to use human cognition as the fundamental feature to discriminate between user-friendly vs. cumbersome onscreen layout designs. To validate our observations we compared our results with bench marked data based on user study and KLM-GOMS model. A classifier is first trained for high and low cognition tasks based on well-established cognitive tests (e.g. Stroop test) and then this classifier is used to report the cognition class for a particular onscreen layout. A high cognition load class indicates complexity in the layout design whereas a low cognition output indicates the layout to be user friendly. Present evaluation methods like user study or KLM-GOMS based model, serves as an indirect measure of goodness of layout designs. In contrast, our approach has a unique advantage as this is a direct measure of human's biological response subjected to stimuli (in our case onscreen keyboard layouts) hence more reliable.</abstract><pub>IEEE</pub><doi>10.1109/SMC.2013.88</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2013 IEEE International Conference on Systems, Man, and Cybernetics, 2013, p.480-486
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_6721841
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain modeling
Cognition
Cognitive load
Electroencephalogram
Electroencephalography
keyboard layout evaluation
Keyboards
KLM-GOMS
Layout
Load modeling
Training
title Evaluation of Different Onscreen Keyboard Layouts Using EEG Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluation%20of%20Different%20Onscreen%20Keyboard%20Layouts%20Using%20EEG%20Signals&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics&rft.au=Sinharay,%20Arijit&rft.date=2013-10&rft.spage=480&rft.epage=486&rft.pages=480-486&rft.issn=1062-922X&rft.eissn=2577-1655&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SMC.2013.88&rft_dat=%3Cieee_6IE%3E6721841%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479906522&rft.eisbn_list=9781479906529&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6721841&rfr_iscdi=true