Maximum correlation minimum redundancy in weighted gene selection

Microarray technology has been recently used to analyze the behavior of thousands of genes simultaneously, and have an important role in diagnosis, detection and treatment methods. Reducing the size of the attributes (genes) with high potential for classification of microarray data analysis is thus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ebrahimpour, Morva, Mahmoodian, Hamid, Ghayour, Rahim
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue
container_start_page 44
container_title
container_volume
creator Ebrahimpour, Morva
Mahmoodian, Hamid
Ghayour, Rahim
description Microarray technology has been recently used to analyze the behavior of thousands of genes simultaneously, and have an important role in diagnosis, detection and treatment methods. Reducing the size of the attributes (genes) with high potential for classification of microarray data analysis is thus an important goal. In this paper, we propose a new feature selection method based on maximum correlation and minimum redundancy (MCMR). In addition, a new method for weighting the genes has been introduced to select a final set of genes within all participated genes in cross validation procedure. The performance of proposed have been analyzed on two microarray data sets: colon cancer and breast cancer dataset. The results show that MCMR can increase the classification accuracy as well as reducing the number of selected genes significantly, compare to some other gene selection methods such as SNR (signal to noise ratio), PCC (Pearson Correlation Coefficient) and Fisher score.
doi_str_mv 10.1109/ICECCO.2013.6718224
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6718224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6718224</ieee_id><sourcerecordid>6718224</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-39be3e5baef464fe301462c8f07cd4eff22805abde609c123ce59960161494073</originalsourceid><addsrcrecordid>eNotj8FKAzEUReNCqNZ-QTf5gRnfSzKZybKEqoVKN7oumcxLG5lJJTNF-_eidnXhcDhwGVsilIhgHjd2be2uFICy1DU2Qqgbdo-qNkZKJWHGFuP4AQBodK1Nc8dWr-47DueB-1PO1LspnhIfYvpjmbpz6lzyFx4T_6J4OE7U8QMl4iP15H_tB3YbXD_S4rpz9v60frMvxXb3vLGrbRGFwqmQpiVJVesoKK0CSUClhW8C1L5TFIIQDVSu7UiD8Sikp8oYDahRGQW1nLPlfzcS0f4zx8Hly_76Uv4ARvtI_Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Maximum correlation minimum redundancy in weighted gene selection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ebrahimpour, Morva ; Mahmoodian, Hamid ; Ghayour, Rahim</creator><creatorcontrib>Ebrahimpour, Morva ; Mahmoodian, Hamid ; Ghayour, Rahim</creatorcontrib><description>Microarray technology has been recently used to analyze the behavior of thousands of genes simultaneously, and have an important role in diagnosis, detection and treatment methods. Reducing the size of the attributes (genes) with high potential for classification of microarray data analysis is thus an important goal. In this paper, we propose a new feature selection method based on maximum correlation and minimum redundancy (MCMR). In addition, a new method for weighting the genes has been introduced to select a final set of genes within all participated genes in cross validation procedure. The performance of proposed have been analyzed on two microarray data sets: colon cancer and breast cancer dataset. The results show that MCMR can increase the classification accuracy as well as reducing the number of selected genes significantly, compare to some other gene selection methods such as SNR (signal to noise ratio), PCC (Pearson Correlation Coefficient) and Fisher score.</description><identifier>EISBN: 1479933430</identifier><identifier>EISBN: 9781479933433</identifier><identifier>DOI: 10.1109/ICECCO.2013.6718224</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Breast cancer ; Colon ; Correlation ; Gene expression ; Gene selection ; redundancy weighting ; Tumors</subject><ispartof>2013 International Conference on Electronics, Computer and Computation (ICECCO), 2013, p.44-47</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6718224$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6718224$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ebrahimpour, Morva</creatorcontrib><creatorcontrib>Mahmoodian, Hamid</creatorcontrib><creatorcontrib>Ghayour, Rahim</creatorcontrib><title>Maximum correlation minimum redundancy in weighted gene selection</title><title>2013 International Conference on Electronics, Computer and Computation (ICECCO)</title><addtitle>ICECCO</addtitle><description>Microarray technology has been recently used to analyze the behavior of thousands of genes simultaneously, and have an important role in diagnosis, detection and treatment methods. Reducing the size of the attributes (genes) with high potential for classification of microarray data analysis is thus an important goal. In this paper, we propose a new feature selection method based on maximum correlation and minimum redundancy (MCMR). In addition, a new method for weighting the genes has been introduced to select a final set of genes within all participated genes in cross validation procedure. The performance of proposed have been analyzed on two microarray data sets: colon cancer and breast cancer dataset. The results show that MCMR can increase the classification accuracy as well as reducing the number of selected genes significantly, compare to some other gene selection methods such as SNR (signal to noise ratio), PCC (Pearson Correlation Coefficient) and Fisher score.</description><subject>Accuracy</subject><subject>Breast cancer</subject><subject>Colon</subject><subject>Correlation</subject><subject>Gene expression</subject><subject>Gene selection</subject><subject>redundancy weighting</subject><subject>Tumors</subject><isbn>1479933430</isbn><isbn>9781479933433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FKAzEUReNCqNZ-QTf5gRnfSzKZybKEqoVKN7oumcxLG5lJJTNF-_eidnXhcDhwGVsilIhgHjd2be2uFICy1DU2Qqgbdo-qNkZKJWHGFuP4AQBodK1Nc8dWr-47DueB-1PO1LspnhIfYvpjmbpz6lzyFx4T_6J4OE7U8QMl4iP15H_tB3YbXD_S4rpz9v60frMvxXb3vLGrbRGFwqmQpiVJVesoKK0CSUClhW8C1L5TFIIQDVSu7UiD8Sikp8oYDahRGQW1nLPlfzcS0f4zx8Hly_76Uv4ARvtI_Q</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Ebrahimpour, Morva</creator><creator>Mahmoodian, Hamid</creator><creator>Ghayour, Rahim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20131101</creationdate><title>Maximum correlation minimum redundancy in weighted gene selection</title><author>Ebrahimpour, Morva ; Mahmoodian, Hamid ; Ghayour, Rahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-39be3e5baef464fe301462c8f07cd4eff22805abde609c123ce59960161494073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Breast cancer</topic><topic>Colon</topic><topic>Correlation</topic><topic>Gene expression</topic><topic>Gene selection</topic><topic>redundancy weighting</topic><topic>Tumors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ebrahimpour, Morva</creatorcontrib><creatorcontrib>Mahmoodian, Hamid</creatorcontrib><creatorcontrib>Ghayour, Rahim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ebrahimpour, Morva</au><au>Mahmoodian, Hamid</au><au>Ghayour, Rahim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Maximum correlation minimum redundancy in weighted gene selection</atitle><btitle>2013 International Conference on Electronics, Computer and Computation (ICECCO)</btitle><stitle>ICECCO</stitle><date>2013-11-01</date><risdate>2013</risdate><spage>44</spage><epage>47</epage><pages>44-47</pages><eisbn>1479933430</eisbn><eisbn>9781479933433</eisbn><abstract>Microarray technology has been recently used to analyze the behavior of thousands of genes simultaneously, and have an important role in diagnosis, detection and treatment methods. Reducing the size of the attributes (genes) with high potential for classification of microarray data analysis is thus an important goal. In this paper, we propose a new feature selection method based on maximum correlation and minimum redundancy (MCMR). In addition, a new method for weighting the genes has been introduced to select a final set of genes within all participated genes in cross validation procedure. The performance of proposed have been analyzed on two microarray data sets: colon cancer and breast cancer dataset. The results show that MCMR can increase the classification accuracy as well as reducing the number of selected genes significantly, compare to some other gene selection methods such as SNR (signal to noise ratio), PCC (Pearson Correlation Coefficient) and Fisher score.</abstract><pub>IEEE</pub><doi>10.1109/ICECCO.2013.6718224</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 1479933430
ispartof 2013 International Conference on Electronics, Computer and Computation (ICECCO), 2013, p.44-47
issn
language eng
recordid cdi_ieee_primary_6718224
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Breast cancer
Colon
Correlation
Gene expression
Gene selection
redundancy weighting
Tumors
title Maximum correlation minimum redundancy in weighted gene selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Maximum%20correlation%20minimum%20redundancy%20in%20weighted%20gene%20selection&rft.btitle=2013%20International%20Conference%20on%20Electronics,%20Computer%20and%20Computation%20(ICECCO)&rft.au=Ebrahimpour,%20Morva&rft.date=2013-11-01&rft.spage=44&rft.epage=47&rft.pages=44-47&rft_id=info:doi/10.1109/ICECCO.2013.6718224&rft_dat=%3Cieee_6IE%3E6718224%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479933430&rft.eisbn_list=9781479933433&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6718224&rfr_iscdi=true