Time-frequency plane splitting for the first order local polynomial Fourier transform
In this paper we present a time-frequency plane tiling (splitting) approach for the local polynomial Fourier transform. Comparison of the proposed approach with the one based on the short-time Fourier transform is given. Advantages of the first order local polynomial Fourier transform in the localiz...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 454 |
---|---|
container_issue | |
container_start_page | 451 |
container_title | |
container_volume | |
creator | Draskovic, A. Brajovic, M. Dakovic, M. Stankovic, Lj |
description | In this paper we present a time-frequency plane tiling (splitting) approach for the local polynomial Fourier transform. Comparison of the proposed approach with the one based on the short-time Fourier transform is given. Advantages of the first order local polynomial Fourier transform in the localization and analysis of LFM signals are shown. Signals that can locally be approximated by the LFM signals are also considered. Theory is illustrated by several examples. |
doi_str_mv | 10.1109/TELFOR.2013.6716265 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6716265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6716265</ieee_id><sourcerecordid>6716265</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-16f117b8b7686d942f2bc44546fe725a78fa8b748ed9b194f41dbe27396afb7b3</originalsourceid><addsrcrecordid>eNotj8tqwzAURNVFoW2aL8hGP2BXV5Yla1lC3BYMgeKsg2RftSryo7KyyN_X0Kxm4HAGhpAdsByA6Zf20NTHz5wzKHKpQHJZ3pEnEEprEJypB7Jdlh_GGChVlqAfyan1A2Yu4u8Fx-5K52BGpMscfEp-_KJuijR9I3U-LolOscdIw9SZQOcpXMdp8Gutp0v0K0jRjMtqDM_k3pmw4PaWG3KqD-3-PWuObx_71ybznFUpA-kAlK2skpXsteCO206IUkiHipdGVc6sUFTYawtaOAG9Ra4KLY2zyhYbsvvf9Yh4nqMfTLyeb8-LP2GAUQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time-frequency plane splitting for the first order local polynomial Fourier transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Draskovic, A. ; Brajovic, M. ; Dakovic, M. ; Stankovic, Lj</creator><creatorcontrib>Draskovic, A. ; Brajovic, M. ; Dakovic, M. ; Stankovic, Lj</creatorcontrib><description>In this paper we present a time-frequency plane tiling (splitting) approach for the local polynomial Fourier transform. Comparison of the proposed approach with the one based on the short-time Fourier transform is given. Advantages of the first order local polynomial Fourier transform in the localization and analysis of LFM signals are shown. Signals that can locally be approximated by the LFM signals are also considered. Theory is illustrated by several examples.</description><identifier>EISBN: 1479914207</identifier><identifier>EISBN: 9781479914197</identifier><identifier>EISBN: 1479914193</identifier><identifier>EISBN: 9781479914203</identifier><identifier>DOI: 10.1109/TELFOR.2013.6716265</identifier><language>eng</language><publisher>IEEE</publisher><subject>Discrete Fourier transforms ; LFM signals ; LPFT ; Polynomials ; Signal analysis ; signal processing ; STFT ; Time-frequency analysis ; Time-frequency signal analysis ; Time-frequency tilling ; Vectors</subject><ispartof>2013 21st Telecommunications Forum Telfor (TELFOR), 2013, p.451-454</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6716265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6716265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Draskovic, A.</creatorcontrib><creatorcontrib>Brajovic, M.</creatorcontrib><creatorcontrib>Dakovic, M.</creatorcontrib><creatorcontrib>Stankovic, Lj</creatorcontrib><title>Time-frequency plane splitting for the first order local polynomial Fourier transform</title><title>2013 21st Telecommunications Forum Telfor (TELFOR)</title><addtitle>TELFOR</addtitle><description>In this paper we present a time-frequency plane tiling (splitting) approach for the local polynomial Fourier transform. Comparison of the proposed approach with the one based on the short-time Fourier transform is given. Advantages of the first order local polynomial Fourier transform in the localization and analysis of LFM signals are shown. Signals that can locally be approximated by the LFM signals are also considered. Theory is illustrated by several examples.</description><subject>Discrete Fourier transforms</subject><subject>LFM signals</subject><subject>LPFT</subject><subject>Polynomials</subject><subject>Signal analysis</subject><subject>signal processing</subject><subject>STFT</subject><subject>Time-frequency analysis</subject><subject>Time-frequency signal analysis</subject><subject>Time-frequency tilling</subject><subject>Vectors</subject><isbn>1479914207</isbn><isbn>9781479914197</isbn><isbn>1479914193</isbn><isbn>9781479914203</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURNVFoW2aL8hGP2BXV5Yla1lC3BYMgeKsg2RftSryo7KyyN_X0Kxm4HAGhpAdsByA6Zf20NTHz5wzKHKpQHJZ3pEnEEprEJypB7Jdlh_GGChVlqAfyan1A2Yu4u8Fx-5K52BGpMscfEp-_KJuijR9I3U-LolOscdIw9SZQOcpXMdp8Gutp0v0K0jRjMtqDM_k3pmw4PaWG3KqD-3-PWuObx_71ybznFUpA-kAlK2skpXsteCO206IUkiHipdGVc6sUFTYawtaOAG9Ra4KLY2zyhYbsvvf9Yh4nqMfTLyeb8-LP2GAUQA</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Draskovic, A.</creator><creator>Brajovic, M.</creator><creator>Dakovic, M.</creator><creator>Stankovic, Lj</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20131101</creationdate><title>Time-frequency plane splitting for the first order local polynomial Fourier transform</title><author>Draskovic, A. ; Brajovic, M. ; Dakovic, M. ; Stankovic, Lj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-16f117b8b7686d942f2bc44546fe725a78fa8b748ed9b194f41dbe27396afb7b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Discrete Fourier transforms</topic><topic>LFM signals</topic><topic>LPFT</topic><topic>Polynomials</topic><topic>Signal analysis</topic><topic>signal processing</topic><topic>STFT</topic><topic>Time-frequency analysis</topic><topic>Time-frequency signal analysis</topic><topic>Time-frequency tilling</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Draskovic, A.</creatorcontrib><creatorcontrib>Brajovic, M.</creatorcontrib><creatorcontrib>Dakovic, M.</creatorcontrib><creatorcontrib>Stankovic, Lj</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Draskovic, A.</au><au>Brajovic, M.</au><au>Dakovic, M.</au><au>Stankovic, Lj</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time-frequency plane splitting for the first order local polynomial Fourier transform</atitle><btitle>2013 21st Telecommunications Forum Telfor (TELFOR)</btitle><stitle>TELFOR</stitle><date>2013-11-01</date><risdate>2013</risdate><spage>451</spage><epage>454</epage><pages>451-454</pages><eisbn>1479914207</eisbn><eisbn>9781479914197</eisbn><eisbn>1479914193</eisbn><eisbn>9781479914203</eisbn><abstract>In this paper we present a time-frequency plane tiling (splitting) approach for the local polynomial Fourier transform. Comparison of the proposed approach with the one based on the short-time Fourier transform is given. Advantages of the first order local polynomial Fourier transform in the localization and analysis of LFM signals are shown. Signals that can locally be approximated by the LFM signals are also considered. Theory is illustrated by several examples.</abstract><pub>IEEE</pub><doi>10.1109/TELFOR.2013.6716265</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 1479914207 |
ispartof | 2013 21st Telecommunications Forum Telfor (TELFOR), 2013, p.451-454 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6716265 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Discrete Fourier transforms LFM signals LPFT Polynomials Signal analysis signal processing STFT Time-frequency analysis Time-frequency signal analysis Time-frequency tilling Vectors |
title | Time-frequency plane splitting for the first order local polynomial Fourier transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time-frequency%20plane%20splitting%20for%20the%20first%20order%20local%20polynomial%20Fourier%20transform&rft.btitle=2013%2021st%20Telecommunications%20Forum%20Telfor%20(TELFOR)&rft.au=Draskovic,%20A.&rft.date=2013-11-01&rft.spage=451&rft.epage=454&rft.pages=451-454&rft_id=info:doi/10.1109/TELFOR.2013.6716265&rft_dat=%3Cieee_6IE%3E6716265%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479914207&rft.eisbn_list=9781479914197&rft.eisbn_list=1479914193&rft.eisbn_list=9781479914203&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6716265&rfr_iscdi=true |