Time-frequency plane splitting for the first order local polynomial Fourier transform

In this paper we present a time-frequency plane tiling (splitting) approach for the local polynomial Fourier transform. Comparison of the proposed approach with the one based on the short-time Fourier transform is given. Advantages of the first order local polynomial Fourier transform in the localiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Draskovic, A., Brajovic, M., Dakovic, M., Stankovic, Lj
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue
container_start_page 451
container_title
container_volume
creator Draskovic, A.
Brajovic, M.
Dakovic, M.
Stankovic, Lj
description In this paper we present a time-frequency plane tiling (splitting) approach for the local polynomial Fourier transform. Comparison of the proposed approach with the one based on the short-time Fourier transform is given. Advantages of the first order local polynomial Fourier transform in the localization and analysis of LFM signals are shown. Signals that can locally be approximated by the LFM signals are also considered. Theory is illustrated by several examples.
doi_str_mv 10.1109/TELFOR.2013.6716265
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6716265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6716265</ieee_id><sourcerecordid>6716265</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-16f117b8b7686d942f2bc44546fe725a78fa8b748ed9b194f41dbe27396afb7b3</originalsourceid><addsrcrecordid>eNotj8tqwzAURNVFoW2aL8hGP2BXV5Yla1lC3BYMgeKsg2RftSryo7KyyN_X0Kxm4HAGhpAdsByA6Zf20NTHz5wzKHKpQHJZ3pEnEEprEJypB7Jdlh_GGChVlqAfyan1A2Yu4u8Fx-5K52BGpMscfEp-_KJuijR9I3U-LolOscdIw9SZQOcpXMdp8Gutp0v0K0jRjMtqDM_k3pmw4PaWG3KqD-3-PWuObx_71ybznFUpA-kAlK2skpXsteCO206IUkiHipdGVc6sUFTYawtaOAG9Ra4KLY2zyhYbsvvf9Yh4nqMfTLyeb8-LP2GAUQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time-frequency plane splitting for the first order local polynomial Fourier transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Draskovic, A. ; Brajovic, M. ; Dakovic, M. ; Stankovic, Lj</creator><creatorcontrib>Draskovic, A. ; Brajovic, M. ; Dakovic, M. ; Stankovic, Lj</creatorcontrib><description>In this paper we present a time-frequency plane tiling (splitting) approach for the local polynomial Fourier transform. Comparison of the proposed approach with the one based on the short-time Fourier transform is given. Advantages of the first order local polynomial Fourier transform in the localization and analysis of LFM signals are shown. Signals that can locally be approximated by the LFM signals are also considered. Theory is illustrated by several examples.</description><identifier>EISBN: 1479914207</identifier><identifier>EISBN: 9781479914197</identifier><identifier>EISBN: 1479914193</identifier><identifier>EISBN: 9781479914203</identifier><identifier>DOI: 10.1109/TELFOR.2013.6716265</identifier><language>eng</language><publisher>IEEE</publisher><subject>Discrete Fourier transforms ; LFM signals ; LPFT ; Polynomials ; Signal analysis ; signal processing ; STFT ; Time-frequency analysis ; Time-frequency signal analysis ; Time-frequency tilling ; Vectors</subject><ispartof>2013 21st Telecommunications Forum Telfor (TELFOR), 2013, p.451-454</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6716265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6716265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Draskovic, A.</creatorcontrib><creatorcontrib>Brajovic, M.</creatorcontrib><creatorcontrib>Dakovic, M.</creatorcontrib><creatorcontrib>Stankovic, Lj</creatorcontrib><title>Time-frequency plane splitting for the first order local polynomial Fourier transform</title><title>2013 21st Telecommunications Forum Telfor (TELFOR)</title><addtitle>TELFOR</addtitle><description>In this paper we present a time-frequency plane tiling (splitting) approach for the local polynomial Fourier transform. Comparison of the proposed approach with the one based on the short-time Fourier transform is given. Advantages of the first order local polynomial Fourier transform in the localization and analysis of LFM signals are shown. Signals that can locally be approximated by the LFM signals are also considered. Theory is illustrated by several examples.</description><subject>Discrete Fourier transforms</subject><subject>LFM signals</subject><subject>LPFT</subject><subject>Polynomials</subject><subject>Signal analysis</subject><subject>signal processing</subject><subject>STFT</subject><subject>Time-frequency analysis</subject><subject>Time-frequency signal analysis</subject><subject>Time-frequency tilling</subject><subject>Vectors</subject><isbn>1479914207</isbn><isbn>9781479914197</isbn><isbn>1479914193</isbn><isbn>9781479914203</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAURNVFoW2aL8hGP2BXV5Yla1lC3BYMgeKsg2RftSryo7KyyN_X0Kxm4HAGhpAdsByA6Zf20NTHz5wzKHKpQHJZ3pEnEEprEJypB7Jdlh_GGChVlqAfyan1A2Yu4u8Fx-5K52BGpMscfEp-_KJuijR9I3U-LolOscdIw9SZQOcpXMdp8Gutp0v0K0jRjMtqDM_k3pmw4PaWG3KqD-3-PWuObx_71ybznFUpA-kAlK2skpXsteCO206IUkiHipdGVc6sUFTYawtaOAG9Ra4KLY2zyhYbsvvf9Yh4nqMfTLyeb8-LP2GAUQA</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Draskovic, A.</creator><creator>Brajovic, M.</creator><creator>Dakovic, M.</creator><creator>Stankovic, Lj</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20131101</creationdate><title>Time-frequency plane splitting for the first order local polynomial Fourier transform</title><author>Draskovic, A. ; Brajovic, M. ; Dakovic, M. ; Stankovic, Lj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-16f117b8b7686d942f2bc44546fe725a78fa8b748ed9b194f41dbe27396afb7b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Discrete Fourier transforms</topic><topic>LFM signals</topic><topic>LPFT</topic><topic>Polynomials</topic><topic>Signal analysis</topic><topic>signal processing</topic><topic>STFT</topic><topic>Time-frequency analysis</topic><topic>Time-frequency signal analysis</topic><topic>Time-frequency tilling</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Draskovic, A.</creatorcontrib><creatorcontrib>Brajovic, M.</creatorcontrib><creatorcontrib>Dakovic, M.</creatorcontrib><creatorcontrib>Stankovic, Lj</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Draskovic, A.</au><au>Brajovic, M.</au><au>Dakovic, M.</au><au>Stankovic, Lj</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time-frequency plane splitting for the first order local polynomial Fourier transform</atitle><btitle>2013 21st Telecommunications Forum Telfor (TELFOR)</btitle><stitle>TELFOR</stitle><date>2013-11-01</date><risdate>2013</risdate><spage>451</spage><epage>454</epage><pages>451-454</pages><eisbn>1479914207</eisbn><eisbn>9781479914197</eisbn><eisbn>1479914193</eisbn><eisbn>9781479914203</eisbn><abstract>In this paper we present a time-frequency plane tiling (splitting) approach for the local polynomial Fourier transform. Comparison of the proposed approach with the one based on the short-time Fourier transform is given. Advantages of the first order local polynomial Fourier transform in the localization and analysis of LFM signals are shown. Signals that can locally be approximated by the LFM signals are also considered. Theory is illustrated by several examples.</abstract><pub>IEEE</pub><doi>10.1109/TELFOR.2013.6716265</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 1479914207
ispartof 2013 21st Telecommunications Forum Telfor (TELFOR), 2013, p.451-454
issn
language eng
recordid cdi_ieee_primary_6716265
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Discrete Fourier transforms
LFM signals
LPFT
Polynomials
Signal analysis
signal processing
STFT
Time-frequency analysis
Time-frequency signal analysis
Time-frequency tilling
Vectors
title Time-frequency plane splitting for the first order local polynomial Fourier transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time-frequency%20plane%20splitting%20for%20the%20first%20order%20local%20polynomial%20Fourier%20transform&rft.btitle=2013%2021st%20Telecommunications%20Forum%20Telfor%20(TELFOR)&rft.au=Draskovic,%20A.&rft.date=2013-11-01&rft.spage=451&rft.epage=454&rft.pages=451-454&rft_id=info:doi/10.1109/TELFOR.2013.6716265&rft_dat=%3Cieee_6IE%3E6716265%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479914207&rft.eisbn_list=9781479914197&rft.eisbn_list=1479914193&rft.eisbn_list=9781479914203&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6716265&rfr_iscdi=true