Computer based sleep staging: Challenges for the future
Studies have shown that patients suffering from sleep deprivation have a risk for hypertension, diabetes and depression that is higher than normal sleepers. Treatment for all these problems requires accurate analysis of the sleep stages and patterns in the polysomnographic signals collected in overn...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 285 |
---|---|
container_issue | |
container_start_page | 280 |
container_title | |
container_volume | |
creator | Hamida, Sana Tmar-Ben Ahmed, Beena |
description | Studies have shown that patients suffering from sleep deprivation have a risk for hypertension, diabetes and depression that is higher than normal sleepers. Treatment for all these problems requires accurate analysis of the sleep stages and patterns in the polysomnographic signals collected in overnight recording over several months. However, manual sleep staging is a repetitive and time-consuming process as marking one typical eight hours overnight polysomnographic recording can take up to two hours to complete. Due to increased processing capabilities, it is now possible to automate this process and assist the sleep expert. A large number of algorithms have been proposed during the last few decades. This review article presents an overview of the existing automatic sleep staging methods, discusses the different challenges and proposes future prospects for new research opportunities. |
doi_str_mv | 10.1109/IEEEGCC.2013.6705790 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6705790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6705790</ieee_id><sourcerecordid>6705790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-4d1785844be8cf5c4c87c88537de09c3fc0847e57489d155c29f4e7b975d685b3</originalsourceid><addsrcrecordid>eNpVj81Kw0AURkekoNQ8gS7mBRLv_OXOuJMh1kLBjV2XZHInjaRtyCQL317Bblx9nM05fIw9CSiEAPe8rapq430hQaiiRDDo4IZlDq3Q6Byg1Or2H0t3x7KUvgBAIEpr1D1DfzmNy0wTb-pELU8D0cjTXHf9uXvh_lgPA507SjxeJj4ficdlXiZ6YKtYD4my667Z_q369O_57mOz9a-7PEhZzrluBVpjtW7IhmiCDhaD_S1jS-CCigGsRjKorWuFMUG6qAkbh6YtrWnUmj3-eXsiOoxTf6qn78P1rvoBBm5H8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computer based sleep staging: Challenges for the future</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hamida, Sana Tmar-Ben ; Ahmed, Beena</creator><creatorcontrib>Hamida, Sana Tmar-Ben ; Ahmed, Beena</creatorcontrib><description>Studies have shown that patients suffering from sleep deprivation have a risk for hypertension, diabetes and depression that is higher than normal sleepers. Treatment for all these problems requires accurate analysis of the sleep stages and patterns in the polysomnographic signals collected in overnight recording over several months. However, manual sleep staging is a repetitive and time-consuming process as marking one typical eight hours overnight polysomnographic recording can take up to two hours to complete. Due to increased processing capabilities, it is now possible to automate this process and assist the sleep expert. A large number of algorithms have been proposed during the last few decades. This review article presents an overview of the existing automatic sleep staging methods, discusses the different challenges and proposes future prospects for new research opportunities.</description><identifier>ISBN: 9781479907229</identifier><identifier>ISBN: 1479907227</identifier><identifier>EISBN: 9781479907243</identifier><identifier>EISBN: 1479907235</identifier><identifier>EISBN: 9781479907236</identifier><identifier>EISBN: 1479907243</identifier><identifier>DOI: 10.1109/IEEEGCC.2013.6705790</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic sleep staging ; Biomedical systems ; Classification ; Conferences ; Electroencephalography ; Electromyography ; Electrooculography ; Feature extraction ; Features extraction ; PSG signals ; Sleep ; Sleep deprivation</subject><ispartof>2013 7th IEEE GCC Conference and Exhibition (GCC), 2013, p.280-285</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-4d1785844be8cf5c4c87c88537de09c3fc0847e57489d155c29f4e7b975d685b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6705790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6705790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamida, Sana Tmar-Ben</creatorcontrib><creatorcontrib>Ahmed, Beena</creatorcontrib><title>Computer based sleep staging: Challenges for the future</title><title>2013 7th IEEE GCC Conference and Exhibition (GCC)</title><addtitle>IEEEGCC</addtitle><description>Studies have shown that patients suffering from sleep deprivation have a risk for hypertension, diabetes and depression that is higher than normal sleepers. Treatment for all these problems requires accurate analysis of the sleep stages and patterns in the polysomnographic signals collected in overnight recording over several months. However, manual sleep staging is a repetitive and time-consuming process as marking one typical eight hours overnight polysomnographic recording can take up to two hours to complete. Due to increased processing capabilities, it is now possible to automate this process and assist the sleep expert. A large number of algorithms have been proposed during the last few decades. This review article presents an overview of the existing automatic sleep staging methods, discusses the different challenges and proposes future prospects for new research opportunities.</description><subject>Automatic sleep staging</subject><subject>Biomedical systems</subject><subject>Classification</subject><subject>Conferences</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Electrooculography</subject><subject>Feature extraction</subject><subject>Features extraction</subject><subject>PSG signals</subject><subject>Sleep</subject><subject>Sleep deprivation</subject><isbn>9781479907229</isbn><isbn>1479907227</isbn><isbn>9781479907243</isbn><isbn>1479907235</isbn><isbn>9781479907236</isbn><isbn>1479907243</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81Kw0AURkekoNQ8gS7mBRLv_OXOuJMh1kLBjV2XZHInjaRtyCQL317Bblx9nM05fIw9CSiEAPe8rapq430hQaiiRDDo4IZlDq3Q6Byg1Or2H0t3x7KUvgBAIEpr1D1DfzmNy0wTb-pELU8D0cjTXHf9uXvh_lgPA507SjxeJj4ficdlXiZ6YKtYD4my667Z_q369O_57mOz9a-7PEhZzrluBVpjtW7IhmiCDhaD_S1jS-CCigGsRjKorWuFMUG6qAkbh6YtrWnUmj3-eXsiOoxTf6qn78P1rvoBBm5H8Q</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Hamida, Sana Tmar-Ben</creator><creator>Ahmed, Beena</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201311</creationdate><title>Computer based sleep staging: Challenges for the future</title><author>Hamida, Sana Tmar-Ben ; Ahmed, Beena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-4d1785844be8cf5c4c87c88537de09c3fc0847e57489d155c29f4e7b975d685b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automatic sleep staging</topic><topic>Biomedical systems</topic><topic>Classification</topic><topic>Conferences</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Electrooculography</topic><topic>Feature extraction</topic><topic>Features extraction</topic><topic>PSG signals</topic><topic>Sleep</topic><topic>Sleep deprivation</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamida, Sana Tmar-Ben</creatorcontrib><creatorcontrib>Ahmed, Beena</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamida, Sana Tmar-Ben</au><au>Ahmed, Beena</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computer based sleep staging: Challenges for the future</atitle><btitle>2013 7th IEEE GCC Conference and Exhibition (GCC)</btitle><stitle>IEEEGCC</stitle><date>2013-11</date><risdate>2013</risdate><spage>280</spage><epage>285</epage><pages>280-285</pages><isbn>9781479907229</isbn><isbn>1479907227</isbn><eisbn>9781479907243</eisbn><eisbn>1479907235</eisbn><eisbn>9781479907236</eisbn><eisbn>1479907243</eisbn><abstract>Studies have shown that patients suffering from sleep deprivation have a risk for hypertension, diabetes and depression that is higher than normal sleepers. Treatment for all these problems requires accurate analysis of the sleep stages and patterns in the polysomnographic signals collected in overnight recording over several months. However, manual sleep staging is a repetitive and time-consuming process as marking one typical eight hours overnight polysomnographic recording can take up to two hours to complete. Due to increased processing capabilities, it is now possible to automate this process and assist the sleep expert. A large number of algorithms have been proposed during the last few decades. This review article presents an overview of the existing automatic sleep staging methods, discusses the different challenges and proposes future prospects for new research opportunities.</abstract><pub>IEEE</pub><doi>10.1109/IEEEGCC.2013.6705790</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781479907229 |
ispartof | 2013 7th IEEE GCC Conference and Exhibition (GCC), 2013, p.280-285 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6705790 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automatic sleep staging Biomedical systems Classification Conferences Electroencephalography Electromyography Electrooculography Feature extraction Features extraction PSG signals Sleep Sleep deprivation |
title | Computer based sleep staging: Challenges for the future |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computer%20based%20sleep%20staging:%20Challenges%20for%20the%20future&rft.btitle=2013%207th%20IEEE%20GCC%20Conference%20and%20Exhibition%20(GCC)&rft.au=Hamida,%20Sana%20Tmar-Ben&rft.date=2013-11&rft.spage=280&rft.epage=285&rft.pages=280-285&rft.isbn=9781479907229&rft.isbn_list=1479907227&rft_id=info:doi/10.1109/IEEEGCC.2013.6705790&rft_dat=%3Cieee_6IE%3E6705790%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479907243&rft.eisbn_list=1479907235&rft.eisbn_list=9781479907236&rft.eisbn_list=1479907243&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6705790&rfr_iscdi=true |