Convergence properties of an online learning algorithm in neural network models of complex systems
Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | |
container_start_page | 89 |
container_title | |
container_volume | |
creator | Azarskov, V. N. Nikolaienko, S. A. Zhiteckii, L. S. |
description | Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established. |
doi_str_mv | 10.1109/APUAVD.2013.6705293 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6705293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6705293</ieee_id><sourcerecordid>6705293</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4a3bc14e1dc186da3dea3023ddb0615467f223f51ad7c755fb5ef023f9cea7733</originalsourceid><addsrcrecordid>eNo1kMtOAyEYhTHGRK19gm54gVaYf4Bh2dRr0kQX1m3DDD8VZWAC46Vvr9G6-nJy8p3FIWTG2YJzpi-Xj5vl89WiYhwWUjFRaTgiU60aXiutAZhsjsn5fxDNKZmW8soY41oqqeCMtKsUPzDvMHZIh5wGzKPHQpOjJtIUg49IA5ocfdxRE3Yp-_Glpz7SiO_ZhB-Mnym_0T5ZDL9il_oh4Bct-zJiXy7IiTOh4PTACdncXD-t7ubrh9v71XI991yJcV4baDteI7cdb6Q1YNEAq8DalkkuaqlcVYET3FjVKSFcK9D99E53aJQCmJDZ365HxO2QfW_yfnu4Bb4B119ZDA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convergence properties of an online learning algorithm in neural network models of complex systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azarskov, V. N. ; Nikolaienko, S. A. ; Zhiteckii, L. S.</creator><creatorcontrib>Azarskov, V. N. ; Nikolaienko, S. A. ; Zhiteckii, L. S.</creatorcontrib><description>Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.</description><identifier>ISBN: 1479933058</identifier><identifier>ISBN: 9781479933051</identifier><identifier>EISBN: 9781479933068</identifier><identifier>EISBN: 1479933066</identifier><identifier>DOI: 10.1109/APUAVD.2013.6705293</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Conferences ; Convergence ; gradient algorithm ; learning ; neural network ; Neurons ; nonlinear model ; Unmanned aerial vehicles</subject><ispartof>2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD), 2013, p.89-92</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6705293$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6705293$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azarskov, V. N.</creatorcontrib><creatorcontrib>Nikolaienko, S. A.</creatorcontrib><creatorcontrib>Zhiteckii, L. S.</creatorcontrib><title>Convergence properties of an online learning algorithm in neural network models of complex systems</title><title>2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD)</title><addtitle>APUAVD</addtitle><description>Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Conferences</subject><subject>Convergence</subject><subject>gradient algorithm</subject><subject>learning</subject><subject>neural network</subject><subject>Neurons</subject><subject>nonlinear model</subject><subject>Unmanned aerial vehicles</subject><isbn>1479933058</isbn><isbn>9781479933051</isbn><isbn>9781479933068</isbn><isbn>1479933066</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOAyEYhTHGRK19gm54gVaYf4Bh2dRr0kQX1m3DDD8VZWAC46Vvr9G6-nJy8p3FIWTG2YJzpi-Xj5vl89WiYhwWUjFRaTgiU60aXiutAZhsjsn5fxDNKZmW8soY41oqqeCMtKsUPzDvMHZIh5wGzKPHQpOjJtIUg49IA5ocfdxRE3Yp-_Glpz7SiO_ZhB-Mnym_0T5ZDL9il_oh4Bct-zJiXy7IiTOh4PTACdncXD-t7ubrh9v71XI991yJcV4baDteI7cdb6Q1YNEAq8DalkkuaqlcVYET3FjVKSFcK9D99E53aJQCmJDZ365HxO2QfW_yfnu4Bb4B119ZDA</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Azarskov, V. N.</creator><creator>Nikolaienko, S. A.</creator><creator>Zhiteckii, L. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201310</creationdate><title>Convergence properties of an online learning algorithm in neural network models of complex systems</title><author>Azarskov, V. N. ; Nikolaienko, S. A. ; Zhiteckii, L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4a3bc14e1dc186da3dea3023ddb0615467f223f51ad7c755fb5ef023f9cea7733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Conferences</topic><topic>Convergence</topic><topic>gradient algorithm</topic><topic>learning</topic><topic>neural network</topic><topic>Neurons</topic><topic>nonlinear model</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Azarskov, V. N.</creatorcontrib><creatorcontrib>Nikolaienko, S. A.</creatorcontrib><creatorcontrib>Zhiteckii, L. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azarskov, V. N.</au><au>Nikolaienko, S. A.</au><au>Zhiteckii, L. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convergence properties of an online learning algorithm in neural network models of complex systems</atitle><btitle>2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD)</btitle><stitle>APUAVD</stitle><date>2013-10</date><risdate>2013</risdate><spage>89</spage><epage>92</epage><pages>89-92</pages><isbn>1479933058</isbn><isbn>9781479933051</isbn><eisbn>9781479933068</eisbn><eisbn>1479933066</eisbn><abstract>Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.</abstract><pub>IEEE</pub><doi>10.1109/APUAVD.2013.6705293</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1479933058 |
ispartof | 2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD), 2013, p.89-92 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6705293 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Biological neural networks Conferences Convergence gradient algorithm learning neural network Neurons nonlinear model Unmanned aerial vehicles |
title | Convergence properties of an online learning algorithm in neural network models of complex systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convergence%20properties%20of%20an%20online%20learning%20algorithm%20in%20neural%20network%20models%20of%20complex%20systems&rft.btitle=2013%20IEEE%202nd%20International%20Conference%20Actual%20Problems%20of%20Unmanned%20Air%20Vehicles%20Developments%20Proceedings%20(APUAVD)&rft.au=Azarskov,%20V.%20N.&rft.date=2013-10&rft.spage=89&rft.epage=92&rft.pages=89-92&rft.isbn=1479933058&rft.isbn_list=9781479933051&rft_id=info:doi/10.1109/APUAVD.2013.6705293&rft_dat=%3Cieee_6IE%3E6705293%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479933068&rft.eisbn_list=1479933066&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6705293&rfr_iscdi=true |