Convergence properties of an online learning algorithm in neural network models of complex systems

Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Azarskov, V. N., Nikolaienko, S. A., Zhiteckii, L. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 89
container_title
container_volume
creator Azarskov, V. N.
Nikolaienko, S. A.
Zhiteckii, L. S.
description Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.
doi_str_mv 10.1109/APUAVD.2013.6705293
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6705293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6705293</ieee_id><sourcerecordid>6705293</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4a3bc14e1dc186da3dea3023ddb0615467f223f51ad7c755fb5ef023f9cea7733</originalsourceid><addsrcrecordid>eNo1kMtOAyEYhTHGRK19gm54gVaYf4Bh2dRr0kQX1m3DDD8VZWAC46Vvr9G6-nJy8p3FIWTG2YJzpi-Xj5vl89WiYhwWUjFRaTgiU60aXiutAZhsjsn5fxDNKZmW8soY41oqqeCMtKsUPzDvMHZIh5wGzKPHQpOjJtIUg49IA5ocfdxRE3Yp-_Glpz7SiO_ZhB-Mnym_0T5ZDL9il_oh4Bct-zJiXy7IiTOh4PTACdncXD-t7ubrh9v71XI991yJcV4baDteI7cdb6Q1YNEAq8DalkkuaqlcVYET3FjVKSFcK9D99E53aJQCmJDZ365HxO2QfW_yfnu4Bb4B119ZDA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convergence properties of an online learning algorithm in neural network models of complex systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azarskov, V. N. ; Nikolaienko, S. A. ; Zhiteckii, L. S.</creator><creatorcontrib>Azarskov, V. N. ; Nikolaienko, S. A. ; Zhiteckii, L. S.</creatorcontrib><description>Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.</description><identifier>ISBN: 1479933058</identifier><identifier>ISBN: 9781479933051</identifier><identifier>EISBN: 9781479933068</identifier><identifier>EISBN: 1479933066</identifier><identifier>DOI: 10.1109/APUAVD.2013.6705293</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Conferences ; Convergence ; gradient algorithm ; learning ; neural network ; Neurons ; nonlinear model ; Unmanned aerial vehicles</subject><ispartof>2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD), 2013, p.89-92</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6705293$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6705293$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azarskov, V. N.</creatorcontrib><creatorcontrib>Nikolaienko, S. A.</creatorcontrib><creatorcontrib>Zhiteckii, L. S.</creatorcontrib><title>Convergence properties of an online learning algorithm in neural network models of complex systems</title><title>2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD)</title><addtitle>APUAVD</addtitle><description>Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Conferences</subject><subject>Convergence</subject><subject>gradient algorithm</subject><subject>learning</subject><subject>neural network</subject><subject>Neurons</subject><subject>nonlinear model</subject><subject>Unmanned aerial vehicles</subject><isbn>1479933058</isbn><isbn>9781479933051</isbn><isbn>9781479933068</isbn><isbn>1479933066</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOAyEYhTHGRK19gm54gVaYf4Bh2dRr0kQX1m3DDD8VZWAC46Vvr9G6-nJy8p3FIWTG2YJzpi-Xj5vl89WiYhwWUjFRaTgiU60aXiutAZhsjsn5fxDNKZmW8soY41oqqeCMtKsUPzDvMHZIh5wGzKPHQpOjJtIUg49IA5ocfdxRE3Yp-_Glpz7SiO_ZhB-Mnym_0T5ZDL9il_oh4Bct-zJiXy7IiTOh4PTACdncXD-t7ubrh9v71XI991yJcV4baDteI7cdb6Q1YNEAq8DalkkuaqlcVYET3FjVKSFcK9D99E53aJQCmJDZ365HxO2QfW_yfnu4Bb4B119ZDA</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Azarskov, V. N.</creator><creator>Nikolaienko, S. A.</creator><creator>Zhiteckii, L. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201310</creationdate><title>Convergence properties of an online learning algorithm in neural network models of complex systems</title><author>Azarskov, V. N. ; Nikolaienko, S. A. ; Zhiteckii, L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4a3bc14e1dc186da3dea3023ddb0615467f223f51ad7c755fb5ef023f9cea7733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Conferences</topic><topic>Convergence</topic><topic>gradient algorithm</topic><topic>learning</topic><topic>neural network</topic><topic>Neurons</topic><topic>nonlinear model</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Azarskov, V. N.</creatorcontrib><creatorcontrib>Nikolaienko, S. A.</creatorcontrib><creatorcontrib>Zhiteckii, L. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azarskov, V. N.</au><au>Nikolaienko, S. A.</au><au>Zhiteckii, L. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convergence properties of an online learning algorithm in neural network models of complex systems</atitle><btitle>2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD)</btitle><stitle>APUAVD</stitle><date>2013-10</date><risdate>2013</risdate><spage>89</spage><epage>92</epage><pages>89-92</pages><isbn>1479933058</isbn><isbn>9781479933051</isbn><eisbn>9781479933068</eisbn><eisbn>1479933066</eisbn><abstract>Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.</abstract><pub>IEEE</pub><doi>10.1109/APUAVD.2013.6705293</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1479933058
ispartof 2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD), 2013, p.89-92
issn
language eng
recordid cdi_ieee_primary_6705293
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Biological neural networks
Conferences
Convergence
gradient algorithm
learning
neural network
Neurons
nonlinear model
Unmanned aerial vehicles
title Convergence properties of an online learning algorithm in neural network models of complex systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convergence%20properties%20of%20an%20online%20learning%20algorithm%20in%20neural%20network%20models%20of%20complex%20systems&rft.btitle=2013%20IEEE%202nd%20International%20Conference%20Actual%20Problems%20of%20Unmanned%20Air%20Vehicles%20Developments%20Proceedings%20(APUAVD)&rft.au=Azarskov,%20V.%20N.&rft.date=2013-10&rft.spage=89&rft.epage=92&rft.pages=89-92&rft.isbn=1479933058&rft.isbn_list=9781479933051&rft_id=info:doi/10.1109/APUAVD.2013.6705293&rft_dat=%3Cieee_6IE%3E6705293%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479933068&rft.eisbn_list=1479933066&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6705293&rfr_iscdi=true