County level of urbanization quality classification based on support vector machine

The county level of urbanization quality analysis and classification play an important role in county economic growth and improve benefit of healthy development of urbanization in China. According to the county level of urbanization quality data which is large scale and imbalance, this paper present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhao Jing, Guo Haixing
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue
container_start_page 388
container_title
container_volume 2
creator Zhao Jing
Guo Haixing
description The county level of urbanization quality analysis and classification play an important role in county economic growth and improve benefit of healthy development of urbanization in China. According to the county level of urbanization quality data which is large scale and imbalance, this paper presented a support vector machine model to classify the county level of urbanization quality. The method was compared with artificial neural network, decision tree, logistic regression and naive Bayesian classifier regarding the county level of urbanization quality classification for Guanzhong urban agglomeration. It is found that the method has the best accuracy rate, hit rate, covering rate and lift coefficient, and provides an effective measurement for county level of urbanization quality classification and prediction.
doi_str_mv 10.1109/ICIII.2013.6703167
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6703167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6703167</ieee_id><sourcerecordid>6703167</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9fc5a45e1239ebb542fdc12e7c0a88f381b3ae0303671d8d7c9a3339b0b698b33</originalsourceid><addsrcrecordid>eNo9kMtqwzAURNUXNEnzA-1GP-D0Std6LYvpwxDootkHSZapimOnlh1Iv76mCV3NcA7MYgi5Z7BiDMxjWZRlueLAcCUVIJPqgsxZrowBnov8ksw4EyKbCL8iS6P0n0Ojhbj-d0LeknlKXwASJcKMfBTd2A5H2oRDaGhX07F3to0_dohdS79H28TJ-samFOvoT9jZFCo6lTTu910_0EPwQ9fTnfWfsQ135Ka2TQrLcy7I5uV5U7xl6_fXsnhaZ9HAkJnaC5uLwDia4JzIeV15xoPyYLWuUTOHNgACSsUqXSlvLCIaB04a7RAX5OE0G0MI230fd7Y_bs_f4C8PS1WB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>County level of urbanization quality classification based on support vector machine</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhao Jing ; Guo Haixing</creator><creatorcontrib>Zhao Jing ; Guo Haixing</creatorcontrib><description>The county level of urbanization quality analysis and classification play an important role in county economic growth and improve benefit of healthy development of urbanization in China. According to the county level of urbanization quality data which is large scale and imbalance, this paper presented a support vector machine model to classify the county level of urbanization quality. The method was compared with artificial neural network, decision tree, logistic regression and naive Bayesian classifier regarding the county level of urbanization quality classification for Guanzhong urban agglomeration. It is found that the method has the best accuracy rate, hit rate, covering rate and lift coefficient, and provides an effective measurement for county level of urbanization quality classification and prediction.</description><identifier>ISSN: 2155-1456</identifier><identifier>ISBN: 9781479939855</identifier><identifier>ISBN: 1479939854</identifier><identifier>EISSN: 2155-1472</identifier><identifier>EISBN: 1479902454</identifier><identifier>EISBN: 9781479902453</identifier><identifier>DOI: 10.1109/ICIII.2013.6703167</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial neural networks ; classification ; county level of urbanization quality ; Data models ; Guanzhong urban agglomeration ; Kernel ; Regression tree analysis ; support vector machine ; Support vector machines</subject><ispartof>2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering, 2013, Vol.2, p.388-391</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6703167$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6703167$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao Jing</creatorcontrib><creatorcontrib>Guo Haixing</creatorcontrib><title>County level of urbanization quality classification based on support vector machine</title><title>2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering</title><addtitle>ICIII</addtitle><description>The county level of urbanization quality analysis and classification play an important role in county economic growth and improve benefit of healthy development of urbanization in China. According to the county level of urbanization quality data which is large scale and imbalance, this paper presented a support vector machine model to classify the county level of urbanization quality. The method was compared with artificial neural network, decision tree, logistic regression and naive Bayesian classifier regarding the county level of urbanization quality classification for Guanzhong urban agglomeration. It is found that the method has the best accuracy rate, hit rate, covering rate and lift coefficient, and provides an effective measurement for county level of urbanization quality classification and prediction.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>classification</subject><subject>county level of urbanization quality</subject><subject>Data models</subject><subject>Guanzhong urban agglomeration</subject><subject>Kernel</subject><subject>Regression tree analysis</subject><subject>support vector machine</subject><subject>Support vector machines</subject><issn>2155-1456</issn><issn>2155-1472</issn><isbn>9781479939855</isbn><isbn>1479939854</isbn><isbn>1479902454</isbn><isbn>9781479902453</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtqwzAURNUXNEnzA-1GP-D0Std6LYvpwxDootkHSZapimOnlh1Iv76mCV3NcA7MYgi5Z7BiDMxjWZRlueLAcCUVIJPqgsxZrowBnov8ksw4EyKbCL8iS6P0n0Ojhbj-d0LeknlKXwASJcKMfBTd2A5H2oRDaGhX07F3to0_dohdS79H28TJ-samFOvoT9jZFCo6lTTu910_0EPwQ9fTnfWfsQ135Ka2TQrLcy7I5uV5U7xl6_fXsnhaZ9HAkJnaC5uLwDia4JzIeV15xoPyYLWuUTOHNgACSsUqXSlvLCIaB04a7RAX5OE0G0MI230fd7Y_bs_f4C8PS1WB</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Zhao Jing</creator><creator>Guo Haixing</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201311</creationdate><title>County level of urbanization quality classification based on support vector machine</title><author>Zhao Jing ; Guo Haixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9fc5a45e1239ebb542fdc12e7c0a88f381b3ae0303671d8d7c9a3339b0b698b33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>classification</topic><topic>county level of urbanization quality</topic><topic>Data models</topic><topic>Guanzhong urban agglomeration</topic><topic>Kernel</topic><topic>Regression tree analysis</topic><topic>support vector machine</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao Jing</creatorcontrib><creatorcontrib>Guo Haixing</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao Jing</au><au>Guo Haixing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>County level of urbanization quality classification based on support vector machine</atitle><btitle>2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering</btitle><stitle>ICIII</stitle><date>2013-11</date><risdate>2013</risdate><volume>2</volume><spage>388</spage><epage>391</epage><pages>388-391</pages><issn>2155-1456</issn><eissn>2155-1472</eissn><isbn>9781479939855</isbn><isbn>1479939854</isbn><eisbn>1479902454</eisbn><eisbn>9781479902453</eisbn><abstract>The county level of urbanization quality analysis and classification play an important role in county economic growth and improve benefit of healthy development of urbanization in China. According to the county level of urbanization quality data which is large scale and imbalance, this paper presented a support vector machine model to classify the county level of urbanization quality. The method was compared with artificial neural network, decision tree, logistic regression and naive Bayesian classifier regarding the county level of urbanization quality classification for Guanzhong urban agglomeration. It is found that the method has the best accuracy rate, hit rate, covering rate and lift coefficient, and provides an effective measurement for county level of urbanization quality classification and prediction.</abstract><pub>IEEE</pub><doi>10.1109/ICIII.2013.6703167</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2155-1456
ispartof 2013 6th International Conference on Information Management, Innovation Management and Industrial Engineering, 2013, Vol.2, p.388-391
issn 2155-1456
2155-1472
language eng
recordid cdi_ieee_primary_6703167
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Artificial neural networks
classification
county level of urbanization quality
Data models
Guanzhong urban agglomeration
Kernel
Regression tree analysis
support vector machine
Support vector machines
title County level of urbanization quality classification based on support vector machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=County%20level%20of%20urbanization%20quality%20classification%20based%20on%20support%20vector%20machine&rft.btitle=2013%206th%20International%20Conference%20on%20Information%20Management,%20Innovation%20Management%20and%20Industrial%20Engineering&rft.au=Zhao%20Jing&rft.date=2013-11&rft.volume=2&rft.spage=388&rft.epage=391&rft.pages=388-391&rft.issn=2155-1456&rft.eissn=2155-1472&rft.isbn=9781479939855&rft.isbn_list=1479939854&rft_id=info:doi/10.1109/ICIII.2013.6703167&rft_dat=%3Cieee_6IE%3E6703167%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479902454&rft.eisbn_list=9781479902453&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6703167&rfr_iscdi=true