Sparsity-Aware Adaptive Algorithms Based on Alternating Optimization and Shrinkage

This letter proposes a novel sparsity-aware adaptive filtering scheme and algorithms based on an alternating optimization strategy with shrinkage. The proposed scheme employs a two-stage structure that consists of an alternating optimization of a diagonally-structured matrix that speeds up the conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2014-02, Vol.21 (2), p.225-229
Hauptverfasser: de Lamare, Rodrigo C., Sampaio-Neto, Raimundo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter proposes a novel sparsity-aware adaptive filtering scheme and algorithms based on an alternating optimization strategy with shrinkage. The proposed scheme employs a two-stage structure that consists of an alternating optimization of a diagonally-structured matrix that speeds up the convergence and an adaptive filter with a shrinkage function that forces the coefficients with small magnitudes to zero. We devise alternating optimization least-mean square (LMS) algorithms for the proposed scheme and analyze its mean-square error. Simulations for a system identification application show that the proposed scheme and algorithms outperform in convergence and tracking existing sparsity-aware algorithms.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2014.2298116