A identification method of a nonlinear ARX model with variable order for nonlinear systems

This paper gives a identification method of new input-output model. In a identification of a nonlinear model, a nonlinear ARX model(NARX) is presented by Ohata, Furuta et.al. The NARX model consists of a set of ARX models with same orders at each output level. However, a systems order of a nonlinear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hasuike, Yuya, Izutsu, Masaki, Hatakeyama, Shosiro
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3251
container_issue
container_start_page 3246
container_title
container_volume
creator Hasuike, Yuya
Izutsu, Masaki
Hatakeyama, Shosiro
description This paper gives a identification method of new input-output model. In a identification of a nonlinear model, a nonlinear ARX model(NARX) is presented by Ohata, Furuta et.al. The NARX model consists of a set of ARX models with same orders at each output level. However, a systems order of a nonlinear system is different for each system state, usually. We propose new NARX model with variable order at a output levels. In addition, the proposed method is compared with the conventional NARX model by estimated accuracy. As a result, the conformance rate of the proposed method were larger than that by one of the NARX model. Furthermore, the mean and the variance of estimated error of the proposed method were smaller than one of the NARX model.
doi_str_mv 10.1109/IECON.2013.6699648
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6699648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6699648</ieee_id><sourcerecordid>6699648</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d3e1b96a1e34042cab385603e5523d1fec69a107a51136d0e804df0b61c58e1b3</originalsourceid><addsrcrecordid>eNpNkM1KAzEURiMo2FZfQDd5gRlz8zeT5VCqLRQLolDclMzkDo3MTCQJSt9ewS5cfZtzzuIj5A5YCcDMw2a13D2XnIEotTZGy_qCzEFWxjDOJVySGSglClXx_TWZp_TBmJK1hhl5b6h3OGXf-85mHyY6Yj4GR0NPLZ3CNPgJbaTNy56OweFAv30-0i8bvW0HpCE6jLQP8R-bTinjmG7IVW-HhLfnXZC3x9Xrcl1sd0-bZbMtPFQqF04gtEZbQCGZ5J1tRa00E6gUFw567LSxwCqrAIR2DGsmXc9aDZ2qf1WxIPd_XY-Ih8_oRxtPh_MP4gesD1KF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A identification method of a nonlinear ARX model with variable order for nonlinear systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hasuike, Yuya ; Izutsu, Masaki ; Hatakeyama, Shosiro</creator><creatorcontrib>Hasuike, Yuya ; Izutsu, Masaki ; Hatakeyama, Shosiro</creatorcontrib><description>This paper gives a identification method of new input-output model. In a identification of a nonlinear model, a nonlinear ARX model(NARX) is presented by Ohata, Furuta et.al. The NARX model consists of a set of ARX models with same orders at each output level. However, a systems order of a nonlinear system is different for each system state, usually. We propose new NARX model with variable order at a output levels. In addition, the proposed method is compared with the conventional NARX model by estimated accuracy. As a result, the conformance rate of the proposed method were larger than that by one of the NARX model. Furthermore, the mean and the variance of estimated error of the proposed method were smaller than one of the NARX model.</description><identifier>ISSN: 1553-572X</identifier><identifier>EISBN: 1479902241</identifier><identifier>EISBN: 9781479902248</identifier><identifier>DOI: 10.1109/IECON.2013.6699648</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Data models ; Equations ; Interpolation ; Mathematical model ; Nonlinear systems ; Predictive models</subject><ispartof>IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, 2013, p.3246-3251</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6699648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6699648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hasuike, Yuya</creatorcontrib><creatorcontrib>Izutsu, Masaki</creatorcontrib><creatorcontrib>Hatakeyama, Shosiro</creatorcontrib><title>A identification method of a nonlinear ARX model with variable order for nonlinear systems</title><title>IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society</title><addtitle>IECON</addtitle><description>This paper gives a identification method of new input-output model. In a identification of a nonlinear model, a nonlinear ARX model(NARX) is presented by Ohata, Furuta et.al. The NARX model consists of a set of ARX models with same orders at each output level. However, a systems order of a nonlinear system is different for each system state, usually. We propose new NARX model with variable order at a output levels. In addition, the proposed method is compared with the conventional NARX model by estimated accuracy. As a result, the conformance rate of the proposed method were larger than that by one of the NARX model. Furthermore, the mean and the variance of estimated error of the proposed method were smaller than one of the NARX model.</description><subject>Accuracy</subject><subject>Data models</subject><subject>Equations</subject><subject>Interpolation</subject><subject>Mathematical model</subject><subject>Nonlinear systems</subject><subject>Predictive models</subject><issn>1553-572X</issn><isbn>1479902241</isbn><isbn>9781479902248</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEURiMo2FZfQDd5gRlz8zeT5VCqLRQLolDclMzkDo3MTCQJSt9ewS5cfZtzzuIj5A5YCcDMw2a13D2XnIEotTZGy_qCzEFWxjDOJVySGSglClXx_TWZp_TBmJK1hhl5b6h3OGXf-85mHyY6Yj4GR0NPLZ3CNPgJbaTNy56OweFAv30-0i8bvW0HpCE6jLQP8R-bTinjmG7IVW-HhLfnXZC3x9Xrcl1sd0-bZbMtPFQqF04gtEZbQCGZ5J1tRa00E6gUFw567LSxwCqrAIR2DGsmXc9aDZ2qf1WxIPd_XY-Ih8_oRxtPh_MP4gesD1KF</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Hasuike, Yuya</creator><creator>Izutsu, Masaki</creator><creator>Hatakeyama, Shosiro</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201311</creationdate><title>A identification method of a nonlinear ARX model with variable order for nonlinear systems</title><author>Hasuike, Yuya ; Izutsu, Masaki ; Hatakeyama, Shosiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d3e1b96a1e34042cab385603e5523d1fec69a107a51136d0e804df0b61c58e1b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Data models</topic><topic>Equations</topic><topic>Interpolation</topic><topic>Mathematical model</topic><topic>Nonlinear systems</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Hasuike, Yuya</creatorcontrib><creatorcontrib>Izutsu, Masaki</creatorcontrib><creatorcontrib>Hatakeyama, Shosiro</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hasuike, Yuya</au><au>Izutsu, Masaki</au><au>Hatakeyama, Shosiro</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A identification method of a nonlinear ARX model with variable order for nonlinear systems</atitle><btitle>IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society</btitle><stitle>IECON</stitle><date>2013-11</date><risdate>2013</risdate><spage>3246</spage><epage>3251</epage><pages>3246-3251</pages><issn>1553-572X</issn><eisbn>1479902241</eisbn><eisbn>9781479902248</eisbn><abstract>This paper gives a identification method of new input-output model. In a identification of a nonlinear model, a nonlinear ARX model(NARX) is presented by Ohata, Furuta et.al. The NARX model consists of a set of ARX models with same orders at each output level. However, a systems order of a nonlinear system is different for each system state, usually. We propose new NARX model with variable order at a output levels. In addition, the proposed method is compared with the conventional NARX model by estimated accuracy. As a result, the conformance rate of the proposed method were larger than that by one of the NARX model. Furthermore, the mean and the variance of estimated error of the proposed method were smaller than one of the NARX model.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2013.6699648</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1553-572X
ispartof IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, 2013, p.3246-3251
issn 1553-572X
language eng
recordid cdi_ieee_primary_6699648
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Data models
Equations
Interpolation
Mathematical model
Nonlinear systems
Predictive models
title A identification method of a nonlinear ARX model with variable order for nonlinear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20identification%20method%20of%20a%20nonlinear%20ARX%20model%20with%20variable%20order%20for%20nonlinear%20systems&rft.btitle=IECON%202013%20-%2039th%20Annual%20Conference%20of%20the%20IEEE%20Industrial%20Electronics%20Society&rft.au=Hasuike,%20Yuya&rft.date=2013-11&rft.spage=3246&rft.epage=3251&rft.pages=3246-3251&rft.issn=1553-572X&rft_id=info:doi/10.1109/IECON.2013.6699648&rft_dat=%3Cieee_6IE%3E6699648%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479902241&rft.eisbn_list=9781479902248&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6699648&rfr_iscdi=true