Formation-based approach for multi-robot cooperative manipulation based on optimal control design

Cooperative manipulation, where several robots collaboratively transport an object, poses a great challenge in robotics. In order to avoid object deformations in cooperative manipulation, formation rigidity of the robots is desired. This work proposes a novel linear state feedback controller that co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sieber, Dominik, Deroo, Frederik, Hirche, Sandra
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5233
container_issue
container_start_page 5227
container_title
container_volume
creator Sieber, Dominik
Deroo, Frederik
Hirche, Sandra
description Cooperative manipulation, where several robots collaboratively transport an object, poses a great challenge in robotics. In order to avoid object deformations in cooperative manipulation, formation rigidity of the robots is desired. This work proposes a novel linear state feedback controller that combines both optimal goal regulation and a relaxed form of the formation rigidity constraint, exploiting an underlying distributed impedance control scheme. Since the presented control design problem is in a biquadratic LQR-like form, we present an iterative design algorithm to compute the controller. As an intermediate result, an approximated state-space model of an interconnected robot system is derived. The controller design approach is evaluated in a full-scale multi-robot experiment.
doi_str_mv 10.1109/IROS.2013.6697112
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6697112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6697112</ieee_id><sourcerecordid>6697112</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-751e444a80c66ed5286a6e0d9974ccccfe5c3bb9c027600c6d071b96e712870a3</originalsourceid><addsrcrecordid>eNo9kN1Kw0AQhVdRsNY-gHizL5A6s5vMbi6lWC0UCv5cl00y0ZUkGzap4NsbbPHczLn4znA4QtwiLBEhv9-87F6XClAviXKDqM7ENaZkNOnM2nMxU5jpBCzRxb_P7JVYDMMXAKAhoyzMhFuH2LrRhy4p3MCVdH0fgys_ZR2ibA_N6JMYijDKMoSe44R-s2xd5_tD85eTx9xkQj_61jUT2Y0xNLLiwX90N-Kyds3Ai9Odi_f149vqOdnunjarh23iFdoxMRlymqbOQknEVaYsOWKo8tyk5aSas1IXRV6CMgQTVIHBIic2qKwBp-fi7vjXM_O-j1OV-LM_raN_Ae38WH0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Formation-based approach for multi-robot cooperative manipulation based on optimal control design</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sieber, Dominik ; Deroo, Frederik ; Hirche, Sandra</creator><creatorcontrib>Sieber, Dominik ; Deroo, Frederik ; Hirche, Sandra</creatorcontrib><description>Cooperative manipulation, where several robots collaboratively transport an object, poses a great challenge in robotics. In order to avoid object deformations in cooperative manipulation, formation rigidity of the robots is desired. This work proposes a novel linear state feedback controller that combines both optimal goal regulation and a relaxed form of the formation rigidity constraint, exploiting an underlying distributed impedance control scheme. Since the presented control design problem is in a biquadratic LQR-like form, we present an iterative design algorithm to compute the controller. As an intermediate result, an approximated state-space model of an interconnected robot system is derived. The controller design approach is evaluated in a full-scale multi-robot experiment.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6697112</identifier><language>eng</language><publisher>IEEE</publisher><subject>Force ; Impedance ; Manipulator dynamics ; Optimal control ; Robot kinematics</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.5227-5233</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6697112$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6697112$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sieber, Dominik</creatorcontrib><creatorcontrib>Deroo, Frederik</creatorcontrib><creatorcontrib>Hirche, Sandra</creatorcontrib><title>Formation-based approach for multi-robot cooperative manipulation based on optimal control design</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>Cooperative manipulation, where several robots collaboratively transport an object, poses a great challenge in robotics. In order to avoid object deformations in cooperative manipulation, formation rigidity of the robots is desired. This work proposes a novel linear state feedback controller that combines both optimal goal regulation and a relaxed form of the formation rigidity constraint, exploiting an underlying distributed impedance control scheme. Since the presented control design problem is in a biquadratic LQR-like form, we present an iterative design algorithm to compute the controller. As an intermediate result, an approximated state-space model of an interconnected robot system is derived. The controller design approach is evaluated in a full-scale multi-robot experiment.</description><subject>Force</subject><subject>Impedance</subject><subject>Manipulator dynamics</subject><subject>Optimal control</subject><subject>Robot kinematics</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kN1Kw0AQhVdRsNY-gHizL5A6s5vMbi6lWC0UCv5cl00y0ZUkGzap4NsbbPHczLn4znA4QtwiLBEhv9-87F6XClAviXKDqM7ENaZkNOnM2nMxU5jpBCzRxb_P7JVYDMMXAKAhoyzMhFuH2LrRhy4p3MCVdH0fgys_ZR2ibA_N6JMYijDKMoSe44R-s2xd5_tD85eTx9xkQj_61jUT2Y0xNLLiwX90N-Kyds3Ai9Odi_f149vqOdnunjarh23iFdoxMRlymqbOQknEVaYsOWKo8tyk5aSas1IXRV6CMgQTVIHBIic2qKwBp-fi7vjXM_O-j1OV-LM_raN_Ae38WH0</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Sieber, Dominik</creator><creator>Deroo, Frederik</creator><creator>Hirche, Sandra</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Formation-based approach for multi-robot cooperative manipulation based on optimal control design</title><author>Sieber, Dominik ; Deroo, Frederik ; Hirche, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-751e444a80c66ed5286a6e0d9974ccccfe5c3bb9c027600c6d071b96e712870a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Force</topic><topic>Impedance</topic><topic>Manipulator dynamics</topic><topic>Optimal control</topic><topic>Robot kinematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Sieber, Dominik</creatorcontrib><creatorcontrib>Deroo, Frederik</creatorcontrib><creatorcontrib>Hirche, Sandra</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sieber, Dominik</au><au>Deroo, Frederik</au><au>Hirche, Sandra</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Formation-based approach for multi-robot cooperative manipulation based on optimal control design</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>5227</spage><epage>5233</epage><pages>5227-5233</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>Cooperative manipulation, where several robots collaboratively transport an object, poses a great challenge in robotics. In order to avoid object deformations in cooperative manipulation, formation rigidity of the robots is desired. This work proposes a novel linear state feedback controller that combines both optimal goal regulation and a relaxed form of the formation rigidity constraint, exploiting an underlying distributed impedance control scheme. Since the presented control design problem is in a biquadratic LQR-like form, we present an iterative design algorithm to compute the controller. As an intermediate result, an approximated state-space model of an interconnected robot system is derived. The controller design approach is evaluated in a full-scale multi-robot experiment.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6697112</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.5227-5233
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6697112
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Force
Impedance
Manipulator dynamics
Optimal control
Robot kinematics
title Formation-based approach for multi-robot cooperative manipulation based on optimal control design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Formation-based%20approach%20for%20multi-robot%20cooperative%20manipulation%20based%20on%20optimal%20control%20design&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Sieber,%20Dominik&rft.date=2013-01-01&rft.spage=5227&rft.epage=5233&rft.pages=5227-5233&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6697112&rft_dat=%3Cieee_6IE%3E6697112%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6697112&rfr_iscdi=true