Pipe mapping with monocular fisheye imagery
We present a vision-based mapping and localization system for operations in pipes such as those found in Liquified Natural Gas (LNG) production. A forward facing fisheye camera mounted on a prototype robot collects imagery as it is teleoperated through a pipe network. The images are processed offlin...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5185 |
---|---|
container_issue | |
container_start_page | 5180 |
container_title | |
container_volume | |
creator | Hansen, Peter Alismail, Hatem Rander, Peter Browning, Brett |
description | We present a vision-based mapping and localization system for operations in pipes such as those found in Liquified Natural Gas (LNG) production. A forward facing fisheye camera mounted on a prototype robot collects imagery as it is teleoperated through a pipe network. The images are processed offline to estimate camera pose and sparse scene structure where the results can be used to generate 3D renderings of the pipe surface. The method extends state of the art visual odometry and mapping for fisheye systems to incorporate geometric constraints based on prior knowledge of the pipe components into a Sparse Bundle Adjustment framework. These constraints significantly reduce inaccuracies resulting from the limited spatial resolution of the fisheye imagery, limited image texture, and visual aliasing. Preliminary results are presented for datasets collected in our fiberglass pipe network which demonstrate the validity of the approach. |
doi_str_mv | 10.1109/IROS.2013.6697105 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6697105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6697105</ieee_id><sourcerecordid>6697105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-421457834a4e4c82b5f99033ee924bc96b22ab5def1814740a102336122c5e8e3</originalsourceid><addsrcrecordid>eNo9j8tKw1AURa-iYK39AHGSuSSex30OpVgtFCo-xuUmnrRXmjYkFcnfK1gc7TVai63UNUKBCOFu_rJ8LQiQC2uDQzAn6hK1dWzZeH-qRoSGc_DWnv2z8Rdq0vefAIDOOvIwUrfPqZWsiW2bduvsOx02WbPf7auvbeyyOvUbGSRLTVxLN1yp8zpue5kcd6zeZw9v06d8sXycT-8XeSL0h1wTauM866hFV55KU4cAzCKBdFkFWxLF0nxIjR610xARiNkiUWXEC4_VzZ83iciq7X7z3bA6_uQf2UNC0A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pipe mapping with monocular fisheye imagery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hansen, Peter ; Alismail, Hatem ; Rander, Peter ; Browning, Brett</creator><creatorcontrib>Hansen, Peter ; Alismail, Hatem ; Rander, Peter ; Browning, Brett</creatorcontrib><description>We present a vision-based mapping and localization system for operations in pipes such as those found in Liquified Natural Gas (LNG) production. A forward facing fisheye camera mounted on a prototype robot collects imagery as it is teleoperated through a pipe network. The images are processed offline to estimate camera pose and sparse scene structure where the results can be used to generate 3D renderings of the pipe surface. The method extends state of the art visual odometry and mapping for fisheye systems to incorporate geometric constraints based on prior knowledge of the pipe components into a Sparse Bundle Adjustment framework. These constraints significantly reduce inaccuracies resulting from the limited spatial resolution of the fisheye imagery, limited image texture, and visual aliasing. Preliminary results are presented for datasets collected in our fiberglass pipe network which demonstrate the validity of the approach.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6697105</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Image reconstruction ; Image resolution ; Robot vision systems ; Three-dimensional displays ; Visualization</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.5180-5185</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6697105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6697105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hansen, Peter</creatorcontrib><creatorcontrib>Alismail, Hatem</creatorcontrib><creatorcontrib>Rander, Peter</creatorcontrib><creatorcontrib>Browning, Brett</creatorcontrib><title>Pipe mapping with monocular fisheye imagery</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We present a vision-based mapping and localization system for operations in pipes such as those found in Liquified Natural Gas (LNG) production. A forward facing fisheye camera mounted on a prototype robot collects imagery as it is teleoperated through a pipe network. The images are processed offline to estimate camera pose and sparse scene structure where the results can be used to generate 3D renderings of the pipe surface. The method extends state of the art visual odometry and mapping for fisheye systems to incorporate geometric constraints based on prior knowledge of the pipe components into a Sparse Bundle Adjustment framework. These constraints significantly reduce inaccuracies resulting from the limited spatial resolution of the fisheye imagery, limited image texture, and visual aliasing. Preliminary results are presented for datasets collected in our fiberglass pipe network which demonstrate the validity of the approach.</description><subject>Cameras</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Robot vision systems</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j8tKw1AURa-iYK39AHGSuSSex30OpVgtFCo-xuUmnrRXmjYkFcnfK1gc7TVai63UNUKBCOFu_rJ8LQiQC2uDQzAn6hK1dWzZeH-qRoSGc_DWnv2z8Rdq0vefAIDOOvIwUrfPqZWsiW2bduvsOx02WbPf7auvbeyyOvUbGSRLTVxLN1yp8zpue5kcd6zeZw9v06d8sXycT-8XeSL0h1wTauM866hFV55KU4cAzCKBdFkFWxLF0nxIjR610xARiNkiUWXEC4_VzZ83iciq7X7z3bA6_uQf2UNC0A</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hansen, Peter</creator><creator>Alismail, Hatem</creator><creator>Rander, Peter</creator><creator>Browning, Brett</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Pipe mapping with monocular fisheye imagery</title><author>Hansen, Peter ; Alismail, Hatem ; Rander, Peter ; Browning, Brett</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-421457834a4e4c82b5f99033ee924bc96b22ab5def1814740a102336122c5e8e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cameras</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Robot vision systems</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Peter</creatorcontrib><creatorcontrib>Alismail, Hatem</creatorcontrib><creatorcontrib>Rander, Peter</creatorcontrib><creatorcontrib>Browning, Brett</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hansen, Peter</au><au>Alismail, Hatem</au><au>Rander, Peter</au><au>Browning, Brett</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pipe mapping with monocular fisheye imagery</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>5180</spage><epage>5185</epage><pages>5180-5185</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>We present a vision-based mapping and localization system for operations in pipes such as those found in Liquified Natural Gas (LNG) production. A forward facing fisheye camera mounted on a prototype robot collects imagery as it is teleoperated through a pipe network. The images are processed offline to estimate camera pose and sparse scene structure where the results can be used to generate 3D renderings of the pipe surface. The method extends state of the art visual odometry and mapping for fisheye systems to incorporate geometric constraints based on prior knowledge of the pipe components into a Sparse Bundle Adjustment framework. These constraints significantly reduce inaccuracies resulting from the limited spatial resolution of the fisheye imagery, limited image texture, and visual aliasing. Preliminary results are presented for datasets collected in our fiberglass pipe network which demonstrate the validity of the approach.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6697105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.5180-5185 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6697105 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cameras Image reconstruction Image resolution Robot vision systems Three-dimensional displays Visualization |
title | Pipe mapping with monocular fisheye imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pipe%20mapping%20with%20monocular%20fisheye%20imagery&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Hansen,%20Peter&rft.date=2013-01-01&rft.spage=5180&rft.epage=5185&rft.pages=5180-5185&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6697105&rft_dat=%3Cieee_6IE%3E6697105%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6697105&rfr_iscdi=true |