Pipe mapping with monocular fisheye imagery

We present a vision-based mapping and localization system for operations in pipes such as those found in Liquified Natural Gas (LNG) production. A forward facing fisheye camera mounted on a prototype robot collects imagery as it is teleoperated through a pipe network. The images are processed offlin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hansen, Peter, Alismail, Hatem, Rander, Peter, Browning, Brett
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5185
container_issue
container_start_page 5180
container_title
container_volume
creator Hansen, Peter
Alismail, Hatem
Rander, Peter
Browning, Brett
description We present a vision-based mapping and localization system for operations in pipes such as those found in Liquified Natural Gas (LNG) production. A forward facing fisheye camera mounted on a prototype robot collects imagery as it is teleoperated through a pipe network. The images are processed offline to estimate camera pose and sparse scene structure where the results can be used to generate 3D renderings of the pipe surface. The method extends state of the art visual odometry and mapping for fisheye systems to incorporate geometric constraints based on prior knowledge of the pipe components into a Sparse Bundle Adjustment framework. These constraints significantly reduce inaccuracies resulting from the limited spatial resolution of the fisheye imagery, limited image texture, and visual aliasing. Preliminary results are presented for datasets collected in our fiberglass pipe network which demonstrate the validity of the approach.
doi_str_mv 10.1109/IROS.2013.6697105
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6697105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6697105</ieee_id><sourcerecordid>6697105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-421457834a4e4c82b5f99033ee924bc96b22ab5def1814740a102336122c5e8e3</originalsourceid><addsrcrecordid>eNo9j8tKw1AURa-iYK39AHGSuSSex30OpVgtFCo-xuUmnrRXmjYkFcnfK1gc7TVai63UNUKBCOFu_rJ8LQiQC2uDQzAn6hK1dWzZeH-qRoSGc_DWnv2z8Rdq0vefAIDOOvIwUrfPqZWsiW2bduvsOx02WbPf7auvbeyyOvUbGSRLTVxLN1yp8zpue5kcd6zeZw9v06d8sXycT-8XeSL0h1wTauM866hFV55KU4cAzCKBdFkFWxLF0nxIjR610xARiNkiUWXEC4_VzZ83iciq7X7z3bA6_uQf2UNC0A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pipe mapping with monocular fisheye imagery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hansen, Peter ; Alismail, Hatem ; Rander, Peter ; Browning, Brett</creator><creatorcontrib>Hansen, Peter ; Alismail, Hatem ; Rander, Peter ; Browning, Brett</creatorcontrib><description>We present a vision-based mapping and localization system for operations in pipes such as those found in Liquified Natural Gas (LNG) production. A forward facing fisheye camera mounted on a prototype robot collects imagery as it is teleoperated through a pipe network. The images are processed offline to estimate camera pose and sparse scene structure where the results can be used to generate 3D renderings of the pipe surface. The method extends state of the art visual odometry and mapping for fisheye systems to incorporate geometric constraints based on prior knowledge of the pipe components into a Sparse Bundle Adjustment framework. These constraints significantly reduce inaccuracies resulting from the limited spatial resolution of the fisheye imagery, limited image texture, and visual aliasing. Preliminary results are presented for datasets collected in our fiberglass pipe network which demonstrate the validity of the approach.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6697105</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Image reconstruction ; Image resolution ; Robot vision systems ; Three-dimensional displays ; Visualization</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.5180-5185</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6697105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6697105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hansen, Peter</creatorcontrib><creatorcontrib>Alismail, Hatem</creatorcontrib><creatorcontrib>Rander, Peter</creatorcontrib><creatorcontrib>Browning, Brett</creatorcontrib><title>Pipe mapping with monocular fisheye imagery</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We present a vision-based mapping and localization system for operations in pipes such as those found in Liquified Natural Gas (LNG) production. A forward facing fisheye camera mounted on a prototype robot collects imagery as it is teleoperated through a pipe network. The images are processed offline to estimate camera pose and sparse scene structure where the results can be used to generate 3D renderings of the pipe surface. The method extends state of the art visual odometry and mapping for fisheye systems to incorporate geometric constraints based on prior knowledge of the pipe components into a Sparse Bundle Adjustment framework. These constraints significantly reduce inaccuracies resulting from the limited spatial resolution of the fisheye imagery, limited image texture, and visual aliasing. Preliminary results are presented for datasets collected in our fiberglass pipe network which demonstrate the validity of the approach.</description><subject>Cameras</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Robot vision systems</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j8tKw1AURa-iYK39AHGSuSSex30OpVgtFCo-xuUmnrRXmjYkFcnfK1gc7TVai63UNUKBCOFu_rJ8LQiQC2uDQzAn6hK1dWzZeH-qRoSGc_DWnv2z8Rdq0vefAIDOOvIwUrfPqZWsiW2bduvsOx02WbPf7auvbeyyOvUbGSRLTVxLN1yp8zpue5kcd6zeZw9v06d8sXycT-8XeSL0h1wTauM866hFV55KU4cAzCKBdFkFWxLF0nxIjR610xARiNkiUWXEC4_VzZ83iciq7X7z3bA6_uQf2UNC0A</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hansen, Peter</creator><creator>Alismail, Hatem</creator><creator>Rander, Peter</creator><creator>Browning, Brett</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Pipe mapping with monocular fisheye imagery</title><author>Hansen, Peter ; Alismail, Hatem ; Rander, Peter ; Browning, Brett</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-421457834a4e4c82b5f99033ee924bc96b22ab5def1814740a102336122c5e8e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cameras</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Robot vision systems</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Peter</creatorcontrib><creatorcontrib>Alismail, Hatem</creatorcontrib><creatorcontrib>Rander, Peter</creatorcontrib><creatorcontrib>Browning, Brett</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hansen, Peter</au><au>Alismail, Hatem</au><au>Rander, Peter</au><au>Browning, Brett</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pipe mapping with monocular fisheye imagery</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>5180</spage><epage>5185</epage><pages>5180-5185</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>We present a vision-based mapping and localization system for operations in pipes such as those found in Liquified Natural Gas (LNG) production. A forward facing fisheye camera mounted on a prototype robot collects imagery as it is teleoperated through a pipe network. The images are processed offline to estimate camera pose and sparse scene structure where the results can be used to generate 3D renderings of the pipe surface. The method extends state of the art visual odometry and mapping for fisheye systems to incorporate geometric constraints based on prior knowledge of the pipe components into a Sparse Bundle Adjustment framework. These constraints significantly reduce inaccuracies resulting from the limited spatial resolution of the fisheye imagery, limited image texture, and visual aliasing. Preliminary results are presented for datasets collected in our fiberglass pipe network which demonstrate the validity of the approach.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6697105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.5180-5185
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6697105
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Image reconstruction
Image resolution
Robot vision systems
Three-dimensional displays
Visualization
title Pipe mapping with monocular fisheye imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pipe%20mapping%20with%20monocular%20fisheye%20imagery&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Hansen,%20Peter&rft.date=2013-01-01&rft.spage=5180&rft.epage=5185&rft.pages=5180-5185&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6697105&rft_dat=%3Cieee_6IE%3E6697105%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6697105&rfr_iscdi=true