Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments
Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this pr...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5155 |
---|---|
container_issue | |
container_start_page | 5148 |
container_title | |
container_volume | |
creator | Ahtiainen, Juhana Peynot, Thierry Saarinen, Jari Scheding, Steven |
description | Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments. |
doi_str_mv | 10.1109/IROS.2013.6697101 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6697101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6697101</ieee_id><sourcerecordid>6697101</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-7e604a36c35b1ba8ad9b8d541d07f26a098a356ab44f34d0f75625cd75e911863</originalsourceid><addsrcrecordid>eNo9kNtqAjEYhNPSQq31AUpv8gJrk83msJcirRUEoYdr-bP5V1PWrCRR8e1rqfRqBuZjBoaQR87GnLP6ef6-_BiXjIuxUrXmjF-Re14pLZSQxlyTQcmlKJhR6ubfS3NHRil9M8a4Vro0bEB2k_16iyH7sKY5wgFjAus7n090C7tEjz5v6L47R8XRO7QQHI3gINLcUwwbCA3S3qYMTYfUYcYm-z5QH-gB15ghoztzBx_78LuTHshtC13C0UWH5Ov15XP6ViyWs_l0sih8yU0uNCpWgVCNkJZbMOBqa5ysuGO6LRWw2oCQCmxVtaJyrNVSlbJxWmLNuVFiSJ7-ej0irnbRbyGeVpezxA9IgF4w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahtiainen, Juhana ; Peynot, Thierry ; Saarinen, Jari ; Scheding, Steven</creator><creatorcontrib>Ahtiainen, Juhana ; Peynot, Thierry ; Saarinen, Jari ; Scheding, Steven</creatorcontrib><description>Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6697101</identifier><language>eng</language><publisher>IEEE</publisher><subject>Laser radar ; Radar cross-sections ; Radar detection ; Ultra wideband radar ; Vegetation ; Vegetation mapping</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.5148-5155</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6697101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6697101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahtiainen, Juhana</creatorcontrib><creatorcontrib>Peynot, Thierry</creatorcontrib><creatorcontrib>Saarinen, Jari</creatorcontrib><creatorcontrib>Scheding, Steven</creatorcontrib><title>Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.</description><subject>Laser radar</subject><subject>Radar cross-sections</subject><subject>Radar detection</subject><subject>Ultra wideband radar</subject><subject>Vegetation</subject><subject>Vegetation mapping</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNtqAjEYhNPSQq31AUpv8gJrk83msJcirRUEoYdr-bP5V1PWrCRR8e1rqfRqBuZjBoaQR87GnLP6ef6-_BiXjIuxUrXmjF-Re14pLZSQxlyTQcmlKJhR6ubfS3NHRil9M8a4Vro0bEB2k_16iyH7sKY5wgFjAus7n090C7tEjz5v6L47R8XRO7QQHI3gINLcUwwbCA3S3qYMTYfUYcYm-z5QH-gB15ghoztzBx_78LuTHshtC13C0UWH5Ov15XP6ViyWs_l0sih8yU0uNCpWgVCNkJZbMOBqa5ysuGO6LRWw2oCQCmxVtaJyrNVSlbJxWmLNuVFiSJ7-ej0irnbRbyGeVpezxA9IgF4w</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Ahtiainen, Juhana</creator><creator>Peynot, Thierry</creator><creator>Saarinen, Jari</creator><creator>Scheding, Steven</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments</title><author>Ahtiainen, Juhana ; Peynot, Thierry ; Saarinen, Jari ; Scheding, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-7e604a36c35b1ba8ad9b8d541d07f26a098a356ab44f34d0f75625cd75e911863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Laser radar</topic><topic>Radar cross-sections</topic><topic>Radar detection</topic><topic>Ultra wideband radar</topic><topic>Vegetation</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahtiainen, Juhana</creatorcontrib><creatorcontrib>Peynot, Thierry</creatorcontrib><creatorcontrib>Saarinen, Jari</creatorcontrib><creatorcontrib>Scheding, Steven</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahtiainen, Juhana</au><au>Peynot, Thierry</au><au>Saarinen, Jari</au><au>Scheding, Steven</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>5148</spage><epage>5155</epage><pages>5148-5155</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6697101</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.5148-5155 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6697101 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Laser radar Radar cross-sections Radar detection Ultra wideband radar Vegetation Vegetation mapping |
title | Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Augmenting%20traversability%20maps%20with%20ultra-wideband%20radar%20to%20enhance%20obstacle%20detection%20in%20vegetated%20environments&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Ahtiainen,%20Juhana&rft.date=2013-01-01&rft.spage=5148&rft.epage=5155&rft.pages=5148-5155&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6697101&rft_dat=%3Cieee_6IE%3E6697101%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6697101&rfr_iscdi=true |