Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments

Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ahtiainen, Juhana, Peynot, Thierry, Saarinen, Jari, Scheding, Steven
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5155
container_issue
container_start_page 5148
container_title
container_volume
creator Ahtiainen, Juhana
Peynot, Thierry
Saarinen, Jari
Scheding, Steven
description Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.
doi_str_mv 10.1109/IROS.2013.6697101
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6697101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6697101</ieee_id><sourcerecordid>6697101</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-7e604a36c35b1ba8ad9b8d541d07f26a098a356ab44f34d0f75625cd75e911863</originalsourceid><addsrcrecordid>eNo9kNtqAjEYhNPSQq31AUpv8gJrk83msJcirRUEoYdr-bP5V1PWrCRR8e1rqfRqBuZjBoaQR87GnLP6ef6-_BiXjIuxUrXmjF-Re14pLZSQxlyTQcmlKJhR6ubfS3NHRil9M8a4Vro0bEB2k_16iyH7sKY5wgFjAus7n090C7tEjz5v6L47R8XRO7QQHI3gINLcUwwbCA3S3qYMTYfUYcYm-z5QH-gB15ghoztzBx_78LuTHshtC13C0UWH5Ov15XP6ViyWs_l0sih8yU0uNCpWgVCNkJZbMOBqa5ysuGO6LRWw2oCQCmxVtaJyrNVSlbJxWmLNuVFiSJ7-ej0irnbRbyGeVpezxA9IgF4w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahtiainen, Juhana ; Peynot, Thierry ; Saarinen, Jari ; Scheding, Steven</creator><creatorcontrib>Ahtiainen, Juhana ; Peynot, Thierry ; Saarinen, Jari ; Scheding, Steven</creatorcontrib><description>Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6697101</identifier><language>eng</language><publisher>IEEE</publisher><subject>Laser radar ; Radar cross-sections ; Radar detection ; Ultra wideband radar ; Vegetation ; Vegetation mapping</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.5148-5155</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6697101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6697101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahtiainen, Juhana</creatorcontrib><creatorcontrib>Peynot, Thierry</creatorcontrib><creatorcontrib>Saarinen, Jari</creatorcontrib><creatorcontrib>Scheding, Steven</creatorcontrib><title>Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.</description><subject>Laser radar</subject><subject>Radar cross-sections</subject><subject>Radar detection</subject><subject>Ultra wideband radar</subject><subject>Vegetation</subject><subject>Vegetation mapping</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNtqAjEYhNPSQq31AUpv8gJrk83msJcirRUEoYdr-bP5V1PWrCRR8e1rqfRqBuZjBoaQR87GnLP6ef6-_BiXjIuxUrXmjF-Re14pLZSQxlyTQcmlKJhR6ubfS3NHRil9M8a4Vro0bEB2k_16iyH7sKY5wgFjAus7n090C7tEjz5v6L47R8XRO7QQHI3gINLcUwwbCA3S3qYMTYfUYcYm-z5QH-gB15ghoztzBx_78LuTHshtC13C0UWH5Ov15XP6ViyWs_l0sih8yU0uNCpWgVCNkJZbMOBqa5ysuGO6LRWw2oCQCmxVtaJyrNVSlbJxWmLNuVFiSJ7-ej0irnbRbyGeVpezxA9IgF4w</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Ahtiainen, Juhana</creator><creator>Peynot, Thierry</creator><creator>Saarinen, Jari</creator><creator>Scheding, Steven</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments</title><author>Ahtiainen, Juhana ; Peynot, Thierry ; Saarinen, Jari ; Scheding, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-7e604a36c35b1ba8ad9b8d541d07f26a098a356ab44f34d0f75625cd75e911863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Laser radar</topic><topic>Radar cross-sections</topic><topic>Radar detection</topic><topic>Ultra wideband radar</topic><topic>Vegetation</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahtiainen, Juhana</creatorcontrib><creatorcontrib>Peynot, Thierry</creatorcontrib><creatorcontrib>Saarinen, Jari</creatorcontrib><creatorcontrib>Scheding, Steven</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahtiainen, Juhana</au><au>Peynot, Thierry</au><au>Saarinen, Jari</au><au>Scheding, Steven</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>5148</spage><epage>5155</epage><pages>5148-5155</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6697101</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.5148-5155
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6697101
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Laser radar
Radar cross-sections
Radar detection
Ultra wideband radar
Vegetation
Vegetation mapping
title Augmenting traversability maps with ultra-wideband radar to enhance obstacle detection in vegetated environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Augmenting%20traversability%20maps%20with%20ultra-wideband%20radar%20to%20enhance%20obstacle%20detection%20in%20vegetated%20environments&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Ahtiainen,%20Juhana&rft.date=2013-01-01&rft.spage=5148&rft.epage=5155&rft.pages=5148-5155&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6697101&rft_dat=%3Cieee_6IE%3E6697101%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6697101&rfr_iscdi=true