Probabilistic place recognition with covisibility maps
In order to diminish the influence of pose choice during appearance-based mapping, a more natural representation of location models is established using covisibility graphs. As the robot moves through the environment, visual landmarks are detected, and connected if seen as covisible. The introductio...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4163 |
---|---|
container_issue | |
container_start_page | 4158 |
container_title | |
container_volume | |
creator | Stumm, Elena Mei, Christopher Lacroix, Simon |
description | In order to diminish the influence of pose choice during appearance-based mapping, a more natural representation of location models is established using covisibility graphs. As the robot moves through the environment, visual landmarks are detected, and connected if seen as covisible. The introduction of a novel generative model allows relevant subgraphs of the covisibility map to be compared to a given query without needing to normalize over all previously seen locations. The use of probabilistic methods provides a unified framework to incorporate sensor error, perceptual aliasing, decision thresholds, and multiple location matches. The system is evaluated and compared with other state-of-the-art methods. |
doi_str_mv | 10.1109/IROS.2013.6696952 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6696952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6696952</ieee_id><sourcerecordid>6696952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-f88eb0e477c410efbcb9816481fa20186c0699e74888d3ab8db013e9770075ba3</originalsourceid><addsrcrecordid>eNo9j81KAzEUhaMo2NY-gLjJC8x4M5m5uVlK0VootPizLkl6RyPTzjAZlL69FYurcxaHj_MJcaMgVwrs3eJ59ZIXoHSOaNFWxZkYqxKNRl0RnYtRoSqdASFe_PeKrsQ0pU8AUAZNQTASuO5b73xsYhpikF3jAsueQ_u-j0Ns9_I7Dh8ytF8xxd_VcJA716VrcVm7JvH0lBPx9vjwOnvKlqv5Yna_zEKBOGQ1EXvg0phQKuDaB29JYUmqdsfzhAHQWjYlEW2187T1RyW2xgCYyjs9Ebd_3MjMm66PO9cfNidl_QMHKEgq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic place recognition with covisibility maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Stumm, Elena ; Mei, Christopher ; Lacroix, Simon</creator><creatorcontrib>Stumm, Elena ; Mei, Christopher ; Lacroix, Simon</creatorcontrib><description>In order to diminish the influence of pose choice during appearance-based mapping, a more natural representation of location models is established using covisibility graphs. As the robot moves through the environment, visual landmarks are detected, and connected if seen as covisible. The introduction of a novel generative model allows relevant subgraphs of the covisibility map to be compared to a given query without needing to normalize over all previously seen locations. The use of probabilistic methods provides a unified framework to incorporate sensor error, perceptual aliasing, decision thresholds, and multiple location matches. The system is evaluated and compared with other state-of-the-art methods.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6696952</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cities and towns ; Dictionaries ; Probabilistic logic ; Probability ; Robots ; Trajectory ; Visualization</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.4158-4163</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-f88eb0e477c410efbcb9816481fa20186c0699e74888d3ab8db013e9770075ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6696952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6696952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stumm, Elena</creatorcontrib><creatorcontrib>Mei, Christopher</creatorcontrib><creatorcontrib>Lacroix, Simon</creatorcontrib><title>Probabilistic place recognition with covisibility maps</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In order to diminish the influence of pose choice during appearance-based mapping, a more natural representation of location models is established using covisibility graphs. As the robot moves through the environment, visual landmarks are detected, and connected if seen as covisible. The introduction of a novel generative model allows relevant subgraphs of the covisibility map to be compared to a given query without needing to normalize over all previously seen locations. The use of probabilistic methods provides a unified framework to incorporate sensor error, perceptual aliasing, decision thresholds, and multiple location matches. The system is evaluated and compared with other state-of-the-art methods.</description><subject>Cities and towns</subject><subject>Dictionaries</subject><subject>Probabilistic logic</subject><subject>Probability</subject><subject>Robots</subject><subject>Trajectory</subject><subject>Visualization</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j81KAzEUhaMo2NY-gLjJC8x4M5m5uVlK0VootPizLkl6RyPTzjAZlL69FYurcxaHj_MJcaMgVwrs3eJ59ZIXoHSOaNFWxZkYqxKNRl0RnYtRoSqdASFe_PeKrsQ0pU8AUAZNQTASuO5b73xsYhpikF3jAsueQ_u-j0Ns9_I7Dh8ytF8xxd_VcJA716VrcVm7JvH0lBPx9vjwOnvKlqv5Yna_zEKBOGQ1EXvg0phQKuDaB29JYUmqdsfzhAHQWjYlEW2187T1RyW2xgCYyjs9Ebd_3MjMm66PO9cfNidl_QMHKEgq</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Stumm, Elena</creator><creator>Mei, Christopher</creator><creator>Lacroix, Simon</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201311</creationdate><title>Probabilistic place recognition with covisibility maps</title><author>Stumm, Elena ; Mei, Christopher ; Lacroix, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-f88eb0e477c410efbcb9816481fa20186c0699e74888d3ab8db013e9770075ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cities and towns</topic><topic>Dictionaries</topic><topic>Probabilistic logic</topic><topic>Probability</topic><topic>Robots</topic><topic>Trajectory</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Stumm, Elena</creatorcontrib><creatorcontrib>Mei, Christopher</creatorcontrib><creatorcontrib>Lacroix, Simon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stumm, Elena</au><au>Mei, Christopher</au><au>Lacroix, Simon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic place recognition with covisibility maps</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-11</date><risdate>2013</risdate><spage>4158</spage><epage>4163</epage><pages>4158-4163</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>In order to diminish the influence of pose choice during appearance-based mapping, a more natural representation of location models is established using covisibility graphs. As the robot moves through the environment, visual landmarks are detected, and connected if seen as covisible. The introduction of a novel generative model allows relevant subgraphs of the covisibility map to be compared to a given query without needing to normalize over all previously seen locations. The use of probabilistic methods provides a unified framework to incorporate sensor error, perceptual aliasing, decision thresholds, and multiple location matches. The system is evaluated and compared with other state-of-the-art methods.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6696952</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.4158-4163 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6696952 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cities and towns Dictionaries Probabilistic logic Probability Robots Trajectory Visualization |
title | Probabilistic place recognition with covisibility maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20place%20recognition%20with%20covisibility%20maps&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Stumm,%20Elena&rft.date=2013-11&rft.spage=4158&rft.epage=4163&rft.pages=4158-4163&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6696952&rft_dat=%3Cieee_6IE%3E6696952%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6696952&rfr_iscdi=true |