Probabilistic place recognition with covisibility maps

In order to diminish the influence of pose choice during appearance-based mapping, a more natural representation of location models is established using covisibility graphs. As the robot moves through the environment, visual landmarks are detected, and connected if seen as covisible. The introductio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stumm, Elena, Mei, Christopher, Lacroix, Simon
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4163
container_issue
container_start_page 4158
container_title
container_volume
creator Stumm, Elena
Mei, Christopher
Lacroix, Simon
description In order to diminish the influence of pose choice during appearance-based mapping, a more natural representation of location models is established using covisibility graphs. As the robot moves through the environment, visual landmarks are detected, and connected if seen as covisible. The introduction of a novel generative model allows relevant subgraphs of the covisibility map to be compared to a given query without needing to normalize over all previously seen locations. The use of probabilistic methods provides a unified framework to incorporate sensor error, perceptual aliasing, decision thresholds, and multiple location matches. The system is evaluated and compared with other state-of-the-art methods.
doi_str_mv 10.1109/IROS.2013.6696952
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6696952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6696952</ieee_id><sourcerecordid>6696952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-f88eb0e477c410efbcb9816481fa20186c0699e74888d3ab8db013e9770075ba3</originalsourceid><addsrcrecordid>eNo9j81KAzEUhaMo2NY-gLjJC8x4M5m5uVlK0VootPizLkl6RyPTzjAZlL69FYurcxaHj_MJcaMgVwrs3eJ59ZIXoHSOaNFWxZkYqxKNRl0RnYtRoSqdASFe_PeKrsQ0pU8AUAZNQTASuO5b73xsYhpikF3jAsueQ_u-j0Ns9_I7Dh8ytF8xxd_VcJA716VrcVm7JvH0lBPx9vjwOnvKlqv5Yna_zEKBOGQ1EXvg0phQKuDaB29JYUmqdsfzhAHQWjYlEW2187T1RyW2xgCYyjs9Ebd_3MjMm66PO9cfNidl_QMHKEgq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic place recognition with covisibility maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Stumm, Elena ; Mei, Christopher ; Lacroix, Simon</creator><creatorcontrib>Stumm, Elena ; Mei, Christopher ; Lacroix, Simon</creatorcontrib><description>In order to diminish the influence of pose choice during appearance-based mapping, a more natural representation of location models is established using covisibility graphs. As the robot moves through the environment, visual landmarks are detected, and connected if seen as covisible. The introduction of a novel generative model allows relevant subgraphs of the covisibility map to be compared to a given query without needing to normalize over all previously seen locations. The use of probabilistic methods provides a unified framework to incorporate sensor error, perceptual aliasing, decision thresholds, and multiple location matches. The system is evaluated and compared with other state-of-the-art methods.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6696952</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cities and towns ; Dictionaries ; Probabilistic logic ; Probability ; Robots ; Trajectory ; Visualization</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.4158-4163</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-f88eb0e477c410efbcb9816481fa20186c0699e74888d3ab8db013e9770075ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6696952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6696952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stumm, Elena</creatorcontrib><creatorcontrib>Mei, Christopher</creatorcontrib><creatorcontrib>Lacroix, Simon</creatorcontrib><title>Probabilistic place recognition with covisibility maps</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In order to diminish the influence of pose choice during appearance-based mapping, a more natural representation of location models is established using covisibility graphs. As the robot moves through the environment, visual landmarks are detected, and connected if seen as covisible. The introduction of a novel generative model allows relevant subgraphs of the covisibility map to be compared to a given query without needing to normalize over all previously seen locations. The use of probabilistic methods provides a unified framework to incorporate sensor error, perceptual aliasing, decision thresholds, and multiple location matches. The system is evaluated and compared with other state-of-the-art methods.</description><subject>Cities and towns</subject><subject>Dictionaries</subject><subject>Probabilistic logic</subject><subject>Probability</subject><subject>Robots</subject><subject>Trajectory</subject><subject>Visualization</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j81KAzEUhaMo2NY-gLjJC8x4M5m5uVlK0VootPizLkl6RyPTzjAZlL69FYurcxaHj_MJcaMgVwrs3eJ59ZIXoHSOaNFWxZkYqxKNRl0RnYtRoSqdASFe_PeKrsQ0pU8AUAZNQTASuO5b73xsYhpikF3jAsueQ_u-j0Ns9_I7Dh8ytF8xxd_VcJA716VrcVm7JvH0lBPx9vjwOnvKlqv5Yna_zEKBOGQ1EXvg0phQKuDaB29JYUmqdsfzhAHQWjYlEW2187T1RyW2xgCYyjs9Ebd_3MjMm66PO9cfNidl_QMHKEgq</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Stumm, Elena</creator><creator>Mei, Christopher</creator><creator>Lacroix, Simon</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201311</creationdate><title>Probabilistic place recognition with covisibility maps</title><author>Stumm, Elena ; Mei, Christopher ; Lacroix, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-f88eb0e477c410efbcb9816481fa20186c0699e74888d3ab8db013e9770075ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cities and towns</topic><topic>Dictionaries</topic><topic>Probabilistic logic</topic><topic>Probability</topic><topic>Robots</topic><topic>Trajectory</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Stumm, Elena</creatorcontrib><creatorcontrib>Mei, Christopher</creatorcontrib><creatorcontrib>Lacroix, Simon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stumm, Elena</au><au>Mei, Christopher</au><au>Lacroix, Simon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic place recognition with covisibility maps</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-11</date><risdate>2013</risdate><spage>4158</spage><epage>4163</epage><pages>4158-4163</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>In order to diminish the influence of pose choice during appearance-based mapping, a more natural representation of location models is established using covisibility graphs. As the robot moves through the environment, visual landmarks are detected, and connected if seen as covisible. The introduction of a novel generative model allows relevant subgraphs of the covisibility map to be compared to a given query without needing to normalize over all previously seen locations. The use of probabilistic methods provides a unified framework to incorporate sensor error, perceptual aliasing, decision thresholds, and multiple location matches. The system is evaluated and compared with other state-of-the-art methods.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6696952</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.4158-4163
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6696952
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cities and towns
Dictionaries
Probabilistic logic
Probability
Robots
Trajectory
Visualization
title Probabilistic place recognition with covisibility maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20place%20recognition%20with%20covisibility%20maps&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Stumm,%20Elena&rft.date=2013-11&rft.spage=4158&rft.epage=4163&rft.pages=4158-4163&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6696952&rft_dat=%3Cieee_6IE%3E6696952%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6696952&rfr_iscdi=true