Stochastic collection and replenishment (SCAR): Objective functions
This paper introduces two objective functions for computing the expected cost in the Stochastic Collection and Replenishment (SCAR) scenario. In the SCAR scenario, multiple user agents have a limited supply of a resource that they either use or collect, depending on the scenario. To enable persisten...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3331 |
---|---|
container_issue | |
container_start_page | 3324 |
container_title | |
container_volume | |
creator | Palmer, Andrew W. Hill, Andrew J. Scheding, Steven J. |
description | This paper introduces two objective functions for computing the expected cost in the Stochastic Collection and Replenishment (SCAR) scenario. In the SCAR scenario, multiple user agents have a limited supply of a resource that they either use or collect, depending on the scenario. To enable persistent autonomy, dedicated replenishment agents travel to the user agents and replenish or collect their supply of the resource, thus allowing them to operate indefinitely in the field. Of the two objective functions, one uses a Monte Carlo method, while the other uses a significantly faster analytical method. Approximations to multiplication, division and inversion of Gaussian distributed variables are used to facilitate propagation of probability distributions in the analytical method when Gaussian distributed parameters are used. The analytical objective function is shown to have greater than 99% comparison accuracy when compared with the Monte Carlo objective function while achieving speed gains of several orders of magnitude. |
doi_str_mv | 10.1109/IROS.2013.6696829 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6696829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6696829</ieee_id><sourcerecordid>6696829</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f5407eb9e3fcee6d53b656c9530e518976978f7852f87c089e40cd83709067203</originalsourceid><addsrcrecordid>eNo9j0tLw0AUhUdRsNb-AHEzS10k3slk7sy4K8FHoRBodF2SyR06JU1KJwr-e1_F1TmLj49zGLsWkAoB9n6xKqs0AyFTRIsmsyfsUuSoJUplzCmbZELJBAzi2X9X5oLNYtwCgNCoMwMTVlTj4DZ1HIPjbug6cmMYel73LT_QvqM-xM2O-pHfVsV8dffAy2b7w3wQ9-_9Lxyv2Lmvu0izY07Z29Pja_GSLMvnRTFfJkFoNSZe5aCpsSS9I8JWyQYVOqskkBLGarTaeG1U5o12YCzl4FojNVj4Xgtyym7-vIGI1vtD2NWHz_Xxv_wC0MRLbQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stochastic collection and replenishment (SCAR): Objective functions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Palmer, Andrew W. ; Hill, Andrew J. ; Scheding, Steven J.</creator><creatorcontrib>Palmer, Andrew W. ; Hill, Andrew J. ; Scheding, Steven J.</creatorcontrib><description>This paper introduces two objective functions for computing the expected cost in the Stochastic Collection and Replenishment (SCAR) scenario. In the SCAR scenario, multiple user agents have a limited supply of a resource that they either use or collect, depending on the scenario. To enable persistent autonomy, dedicated replenishment agents travel to the user agents and replenish or collect their supply of the resource, thus allowing them to operate indefinitely in the field. Of the two objective functions, one uses a Monte Carlo method, while the other uses a significantly faster analytical method. Approximations to multiplication, division and inversion of Gaussian distributed variables are used to facilitate propagation of probability distributions in the analytical method when Gaussian distributed parameters are used. The analytical objective function is shown to have greater than 99% comparison accuracy when compared with the Monte Carlo objective function while achieving speed gains of several orders of magnitude.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6696829</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Equations ; Gaussian distribution ; Linear programming ; Mathematical model ; Probability distribution ; Schedules</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.3324-3331</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6696829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6696829$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Palmer, Andrew W.</creatorcontrib><creatorcontrib>Hill, Andrew J.</creatorcontrib><creatorcontrib>Scheding, Steven J.</creatorcontrib><title>Stochastic collection and replenishment (SCAR): Objective functions</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>This paper introduces two objective functions for computing the expected cost in the Stochastic Collection and Replenishment (SCAR) scenario. In the SCAR scenario, multiple user agents have a limited supply of a resource that they either use or collect, depending on the scenario. To enable persistent autonomy, dedicated replenishment agents travel to the user agents and replenish or collect their supply of the resource, thus allowing them to operate indefinitely in the field. Of the two objective functions, one uses a Monte Carlo method, while the other uses a significantly faster analytical method. Approximations to multiplication, division and inversion of Gaussian distributed variables are used to facilitate propagation of probability distributions in the analytical method when Gaussian distributed parameters are used. The analytical objective function is shown to have greater than 99% comparison accuracy when compared with the Monte Carlo objective function while achieving speed gains of several orders of magnitude.</description><subject>Approximation methods</subject><subject>Equations</subject><subject>Gaussian distribution</subject><subject>Linear programming</subject><subject>Mathematical model</subject><subject>Probability distribution</subject><subject>Schedules</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j0tLw0AUhUdRsNb-AHEzS10k3slk7sy4K8FHoRBodF2SyR06JU1KJwr-e1_F1TmLj49zGLsWkAoB9n6xKqs0AyFTRIsmsyfsUuSoJUplzCmbZELJBAzi2X9X5oLNYtwCgNCoMwMTVlTj4DZ1HIPjbug6cmMYel73LT_QvqM-xM2O-pHfVsV8dffAy2b7w3wQ9-_9Lxyv2Lmvu0izY07Z29Pja_GSLMvnRTFfJkFoNSZe5aCpsSS9I8JWyQYVOqskkBLGarTaeG1U5o12YCzl4FojNVj4Xgtyym7-vIGI1vtD2NWHz_Xxv_wC0MRLbQ</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Palmer, Andrew W.</creator><creator>Hill, Andrew J.</creator><creator>Scheding, Steven J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201311</creationdate><title>Stochastic collection and replenishment (SCAR): Objective functions</title><author>Palmer, Andrew W. ; Hill, Andrew J. ; Scheding, Steven J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f5407eb9e3fcee6d53b656c9530e518976978f7852f87c089e40cd83709067203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation methods</topic><topic>Equations</topic><topic>Gaussian distribution</topic><topic>Linear programming</topic><topic>Mathematical model</topic><topic>Probability distribution</topic><topic>Schedules</topic><toplevel>online_resources</toplevel><creatorcontrib>Palmer, Andrew W.</creatorcontrib><creatorcontrib>Hill, Andrew J.</creatorcontrib><creatorcontrib>Scheding, Steven J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Palmer, Andrew W.</au><au>Hill, Andrew J.</au><au>Scheding, Steven J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stochastic collection and replenishment (SCAR): Objective functions</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-11</date><risdate>2013</risdate><spage>3324</spage><epage>3331</epage><pages>3324-3331</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>This paper introduces two objective functions for computing the expected cost in the Stochastic Collection and Replenishment (SCAR) scenario. In the SCAR scenario, multiple user agents have a limited supply of a resource that they either use or collect, depending on the scenario. To enable persistent autonomy, dedicated replenishment agents travel to the user agents and replenish or collect their supply of the resource, thus allowing them to operate indefinitely in the field. Of the two objective functions, one uses a Monte Carlo method, while the other uses a significantly faster analytical method. Approximations to multiplication, division and inversion of Gaussian distributed variables are used to facilitate propagation of probability distributions in the analytical method when Gaussian distributed parameters are used. The analytical objective function is shown to have greater than 99% comparison accuracy when compared with the Monte Carlo objective function while achieving speed gains of several orders of magnitude.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6696829</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.3324-3331 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6696829 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods Equations Gaussian distribution Linear programming Mathematical model Probability distribution Schedules |
title | Stochastic collection and replenishment (SCAR): Objective functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stochastic%20collection%20and%20replenishment%20(SCAR):%20Objective%20functions&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Palmer,%20Andrew%20W.&rft.date=2013-11&rft.spage=3324&rft.epage=3331&rft.pages=3324-3331&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6696829&rft_dat=%3Cieee_6IE%3E6696829%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6696829&rfr_iscdi=true |