Learning to guide random tree planners in high dimensional spaces

In this paper we present the projection and bias heuristic (PBH), a motion planning algorithm that makes use of low-dimensional projections to improve sampling-based planning algorithms. In contrast to other state-of-the-art methods, we do not assume that projections are either random or given by an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rowekamper, Jorg, Tipaldi, Gian Diego, Burgard, Wolfram
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1757
container_issue
container_start_page 1752
container_title
container_volume
creator Rowekamper, Jorg
Tipaldi, Gian Diego
Burgard, Wolfram
description In this paper we present the projection and bias heuristic (PBH), a motion planning algorithm that makes use of low-dimensional projections to improve sampling-based planning algorithms. In contrast to other state-of-the-art methods, we do not assume that projections are either random or given by an expert user. Rather, our goal is to learn projections such that planning on them improves the efficiency and the quality of solutions. We present both, a method to learn effective projections and a sampling algorithm that makes use of them. We show that our approach can be easily integrated into popular sampling-based planners. Extensive experiments performed in simulated environments demonstrate that our approach produces paths that are in general shorter than those obtained with state-of-the-art algorithms. Moreover, it generally requires less computation time.
doi_str_mv 10.1109/IROS.2013.6696586
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6696586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6696586</ieee_id><sourcerecordid>6696586</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-948d5003f58aa561d58df335358c6ada05b3b20909b2dbbaf0d135f596bdd1723</originalsourceid><addsrcrecordid>eNo9j81KAzEURqMoWGsfQNzkBWa8mfRmkmUpWgsDBX_W5abJTCOdzJCMC99eweLqO6vD-Ri7F1AKAeZx-7p7KysQslTKKNTqgt2Kpaqlkqj1JZtVAmUBWqmrf0Z9wxY5fwKAqFVdaZixVeMpxRA7Pg28-wrO80TRDT2fkvd8PFGMPmUeIj-G7shd6H3MYYh04nmkg8937LqlU_aL887Zx_PT-_qlaHab7XrVFEHUOBVmqR0CyBY1ESrhULtWSvzNPShyBGilrcCAsZWzllpwQmKLRlnnRF3JOXv48wbv_X5Moaf0vT-_lz9GQ0vK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning to guide random tree planners in high dimensional spaces</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rowekamper, Jorg ; Tipaldi, Gian Diego ; Burgard, Wolfram</creator><creatorcontrib>Rowekamper, Jorg ; Tipaldi, Gian Diego ; Burgard, Wolfram</creatorcontrib><description>In this paper we present the projection and bias heuristic (PBH), a motion planning algorithm that makes use of low-dimensional projections to improve sampling-based planning algorithms. In contrast to other state-of-the-art methods, we do not assume that projections are either random or given by an expert user. Rather, our goal is to learn projections such that planning on them improves the efficiency and the quality of solutions. We present both, a method to learn effective projections and a sampling algorithm that makes use of them. We show that our approach can be easily integrated into popular sampling-based planners. Extensive experiments performed in simulated environments demonstrate that our approach produces paths that are in general shorter than those obtained with state-of-the-art algorithms. Moreover, it generally requires less computation time.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6696586</identifier><language>eng</language><publisher>IEEE</publisher><subject>Heuristic algorithms ; Joints ; Manipulators ; Mobile communication ; Planning ; Switches</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.1752-1757</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6696586$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6696586$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rowekamper, Jorg</creatorcontrib><creatorcontrib>Tipaldi, Gian Diego</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><title>Learning to guide random tree planners in high dimensional spaces</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In this paper we present the projection and bias heuristic (PBH), a motion planning algorithm that makes use of low-dimensional projections to improve sampling-based planning algorithms. In contrast to other state-of-the-art methods, we do not assume that projections are either random or given by an expert user. Rather, our goal is to learn projections such that planning on them improves the efficiency and the quality of solutions. We present both, a method to learn effective projections and a sampling algorithm that makes use of them. We show that our approach can be easily integrated into popular sampling-based planners. Extensive experiments performed in simulated environments demonstrate that our approach produces paths that are in general shorter than those obtained with state-of-the-art algorithms. Moreover, it generally requires less computation time.</description><subject>Heuristic algorithms</subject><subject>Joints</subject><subject>Manipulators</subject><subject>Mobile communication</subject><subject>Planning</subject><subject>Switches</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j81KAzEURqMoWGsfQNzkBWa8mfRmkmUpWgsDBX_W5abJTCOdzJCMC99eweLqO6vD-Ri7F1AKAeZx-7p7KysQslTKKNTqgt2Kpaqlkqj1JZtVAmUBWqmrf0Z9wxY5fwKAqFVdaZixVeMpxRA7Pg28-wrO80TRDT2fkvd8PFGMPmUeIj-G7shd6H3MYYh04nmkg8937LqlU_aL887Zx_PT-_qlaHab7XrVFEHUOBVmqR0CyBY1ESrhULtWSvzNPShyBGilrcCAsZWzllpwQmKLRlnnRF3JOXv48wbv_X5Moaf0vT-_lz9GQ0vK</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Rowekamper, Jorg</creator><creator>Tipaldi, Gian Diego</creator><creator>Burgard, Wolfram</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201311</creationdate><title>Learning to guide random tree planners in high dimensional spaces</title><author>Rowekamper, Jorg ; Tipaldi, Gian Diego ; Burgard, Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-948d5003f58aa561d58df335358c6ada05b3b20909b2dbbaf0d135f596bdd1723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Heuristic algorithms</topic><topic>Joints</topic><topic>Manipulators</topic><topic>Mobile communication</topic><topic>Planning</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Rowekamper, Jorg</creatorcontrib><creatorcontrib>Tipaldi, Gian Diego</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rowekamper, Jorg</au><au>Tipaldi, Gian Diego</au><au>Burgard, Wolfram</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning to guide random tree planners in high dimensional spaces</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-11</date><risdate>2013</risdate><spage>1752</spage><epage>1757</epage><pages>1752-1757</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>In this paper we present the projection and bias heuristic (PBH), a motion planning algorithm that makes use of low-dimensional projections to improve sampling-based planning algorithms. In contrast to other state-of-the-art methods, we do not assume that projections are either random or given by an expert user. Rather, our goal is to learn projections such that planning on them improves the efficiency and the quality of solutions. We present both, a method to learn effective projections and a sampling algorithm that makes use of them. We show that our approach can be easily integrated into popular sampling-based planners. Extensive experiments performed in simulated environments demonstrate that our approach produces paths that are in general shorter than those obtained with state-of-the-art algorithms. Moreover, it generally requires less computation time.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6696586</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.1752-1757
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6696586
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Heuristic algorithms
Joints
Manipulators
Mobile communication
Planning
Switches
title Learning to guide random tree planners in high dimensional spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20to%20guide%20random%20tree%20planners%20in%20high%20dimensional%20spaces&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Rowekamper,%20Jorg&rft.date=2013-11&rft.spage=1752&rft.epage=1757&rft.pages=1752-1757&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6696586&rft_dat=%3Cieee_6IE%3E6696586%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6696586&rfr_iscdi=true