Generating sentence from motion by using large-scale and high-order N-grams
Motion recognition is an essential technology for social robots in various environments such as homes, offices and shopping center, where the robots are expected to understand human behavior and interact with them. In this paper, we present a system composed of three models: motion language model, n...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | |
container_start_page | 151 |
container_title | |
container_volume | |
creator | Goutsu, Yusuke Takano, Wataru Nakamura, Yoshihiko |
description | Motion recognition is an essential technology for social robots in various environments such as homes, offices and shopping center, where the robots are expected to understand human behavior and interact with them. In this paper, we present a system composed of three models: motion language model, natural language model and integration inference model, and achieved to generate sentences from motions using large high-order N-grams. We confirmed not only that using higher-order N-grams improves precision in generating long sentences but also that the computational complexity of the proposed system is almost the same as our previous one. In addition, we improved the precision by aligning the graph structure representing generated sentences into confusion network form. This means that simplifying and compacting word sequences affect the precision of sentence generation. |
doi_str_mv | 10.1109/IROS.2013.6696346 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6696346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6696346</ieee_id><sourcerecordid>6696346</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-4f60d7fe36d06e6cfa761cb66e3b1bdeca804252bd0b51851fee6787248e0aae3</originalsourceid><addsrcrecordid>eNo9kM1KAzEURqMoWGsfQNzkBTLe_MxNupSitVgs-LMuyeTOdKQzI8m46NtLsbj6Dhw4i4-xWwmFlDC_X71t3gsFUheIc9QGz9i1NGg16tK5czZRstQCHOLFP5fuis1y_gIAadEqBxP2sqSekh_bvuGZ-pH6inidho53w9gOPQ8H_pOPdu9TQyJXfk_c95Hv2mYnhhQp8VfRJN_lG3ZZ-32m2Wmn7PPp8WPxLNab5WrxsBatMnIUpkaItiaNEZCwqr1FWQVE0kGGSJV3YFSpQoRQSlfKmgits8o4Au9JT9ndX7clou13ajufDtvTD_oX7-JP4g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generating sentence from motion by using large-scale and high-order N-grams</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Goutsu, Yusuke ; Takano, Wataru ; Nakamura, Yoshihiko</creator><creatorcontrib>Goutsu, Yusuke ; Takano, Wataru ; Nakamura, Yoshihiko</creatorcontrib><description>Motion recognition is an essential technology for social robots in various environments such as homes, offices and shopping center, where the robots are expected to understand human behavior and interact with them. In this paper, we present a system composed of three models: motion language model, natural language model and integration inference model, and achieved to generate sentences from motions using large high-order N-grams. We confirmed not only that using higher-order N-grams improves precision in generating long sentences but also that the computational complexity of the proposed system is almost the same as our previous one. In addition, we improved the precision by aligning the graph structure representing generated sentences into confusion network form. This means that simplifying and compacting word sequences affect the precision of sentence generation.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6696346</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Google ; Hidden Markov models ; Lattices ; Natural languages ; Probability ; Training</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.151-156</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6696346$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6696346$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goutsu, Yusuke</creatorcontrib><creatorcontrib>Takano, Wataru</creatorcontrib><creatorcontrib>Nakamura, Yoshihiko</creatorcontrib><title>Generating sentence from motion by using large-scale and high-order N-grams</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>Motion recognition is an essential technology for social robots in various environments such as homes, offices and shopping center, where the robots are expected to understand human behavior and interact with them. In this paper, we present a system composed of three models: motion language model, natural language model and integration inference model, and achieved to generate sentences from motions using large high-order N-grams. We confirmed not only that using higher-order N-grams improves precision in generating long sentences but also that the computational complexity of the proposed system is almost the same as our previous one. In addition, we improved the precision by aligning the graph structure representing generated sentences into confusion network form. This means that simplifying and compacting word sequences affect the precision of sentence generation.</description><subject>Computational modeling</subject><subject>Google</subject><subject>Hidden Markov models</subject><subject>Lattices</subject><subject>Natural languages</subject><subject>Probability</subject><subject>Training</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1KAzEURqMoWGsfQNzkBTLe_MxNupSitVgs-LMuyeTOdKQzI8m46NtLsbj6Dhw4i4-xWwmFlDC_X71t3gsFUheIc9QGz9i1NGg16tK5czZRstQCHOLFP5fuis1y_gIAadEqBxP2sqSekh_bvuGZ-pH6inidho53w9gOPQ8H_pOPdu9TQyJXfk_c95Hv2mYnhhQp8VfRJN_lG3ZZ-32m2Wmn7PPp8WPxLNab5WrxsBatMnIUpkaItiaNEZCwqr1FWQVE0kGGSJV3YFSpQoRQSlfKmgits8o4Au9JT9ndX7clou13ajufDtvTD_oX7-JP4g</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Goutsu, Yusuke</creator><creator>Takano, Wataru</creator><creator>Nakamura, Yoshihiko</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Generating sentence from motion by using large-scale and high-order N-grams</title><author>Goutsu, Yusuke ; Takano, Wataru ; Nakamura, Yoshihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-4f60d7fe36d06e6cfa761cb66e3b1bdeca804252bd0b51851fee6787248e0aae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational modeling</topic><topic>Google</topic><topic>Hidden Markov models</topic><topic>Lattices</topic><topic>Natural languages</topic><topic>Probability</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Goutsu, Yusuke</creatorcontrib><creatorcontrib>Takano, Wataru</creatorcontrib><creatorcontrib>Nakamura, Yoshihiko</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goutsu, Yusuke</au><au>Takano, Wataru</au><au>Nakamura, Yoshihiko</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generating sentence from motion by using large-scale and high-order N-grams</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>151</spage><epage>156</epage><pages>151-156</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>Motion recognition is an essential technology for social robots in various environments such as homes, offices and shopping center, where the robots are expected to understand human behavior and interact with them. In this paper, we present a system composed of three models: motion language model, natural language model and integration inference model, and achieved to generate sentences from motions using large high-order N-grams. We confirmed not only that using higher-order N-grams improves precision in generating long sentences but also that the computational complexity of the proposed system is almost the same as our previous one. In addition, we improved the precision by aligning the graph structure representing generated sentences into confusion network form. This means that simplifying and compacting word sequences affect the precision of sentence generation.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6696346</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.151-156 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6696346 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Hidden Markov models Lattices Natural languages Probability Training |
title | Generating sentence from motion by using large-scale and high-order N-grams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generating%20sentence%20from%20motion%20by%20using%20large-scale%20and%20high-order%20N-grams&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Goutsu,%20Yusuke&rft.date=2013-01-01&rft.spage=151&rft.epage=156&rft.pages=151-156&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6696346&rft_dat=%3Cieee_6IE%3E6696346%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6696346&rfr_iscdi=true |