Household Energy Consumption Segmentation Using Hourly Data

The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape diction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2014-01, Vol.5 (1), p.420-430
Hauptverfasser: Jungsuk Kwac, Flora, June, Rajagopal, Ram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 1
container_start_page 420
container_title IEEE transactions on smart grid
container_volume 5
creator Jungsuk Kwac
Flora, June
Rajagopal, Ram
description The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.
doi_str_mv 10.1109/TSG.2013.2278477
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6693793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6693793</ieee_id><sourcerecordid>10_1109_TSG_2013_2278477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b1435db922aa738576a62d528c7c2e28849fd2f50c4105983a725ed5235772873</originalsourceid><addsrcrecordid>eNo9kE1rAjEQhkNpoWK9F3pZel-bZPJJT8VaLQg9qOcQs1ndools4mH_fdcqzmXmheedw4PQM8FjQrB-Wy1nY4oJjCmVikl5hwZEM10CFuT-dnN4RKOUfnE_ACCoHqD3eTwlv4v7qpgG3267YhJDOh2OuYmhWPrtwYds_8M6NWFb9Hy774pPm-0TeqjtPvnRdQ_R-mu6mszLxc_se_KxKB3DkMsNYcCrjabUWgmKS2EFrThVTjrqqVJM1xWtOXaMYK4VWEm57wHgUlIlYYheL39jyo1Jrsne7VwMwbtsCCWEcdFD-AK5NqbU-toc2-Zg284QbM6STC_JnCWZq6S-8nKpNN77Gy6EBqkB_gCJjmC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Household Energy Consumption Segmentation Using Hourly Data</title><source>IEEE Xplore</source><creator>Jungsuk Kwac ; Flora, June ; Rajagopal, Ram</creator><creatorcontrib>Jungsuk Kwac ; Flora, June ; Rajagopal, Ram</creatorcontrib><description>The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2013.2278477</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Clustering ; Clustering algorithms ; demand response ; Dictionaries ; Electricity ; Encoding ; segmentation ; Shape ; smart meter data ; Sociology ; Statistics ; variability</subject><ispartof>IEEE transactions on smart grid, 2014-01, Vol.5 (1), p.420-430</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b1435db922aa738576a62d528c7c2e28849fd2f50c4105983a725ed5235772873</citedby><cites>FETCH-LOGICAL-c403t-b1435db922aa738576a62d528c7c2e28849fd2f50c4105983a725ed5235772873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6693793$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6693793$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1211456$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jungsuk Kwac</creatorcontrib><creatorcontrib>Flora, June</creatorcontrib><creatorcontrib>Rajagopal, Ram</creatorcontrib><title>Household Energy Consumption Segmentation Using Hourly Data</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.</description><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>demand response</subject><subject>Dictionaries</subject><subject>Electricity</subject><subject>Encoding</subject><subject>segmentation</subject><subject>Shape</subject><subject>smart meter data</subject><subject>Sociology</subject><subject>Statistics</subject><subject>variability</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rAjEQhkNpoWK9F3pZel-bZPJJT8VaLQg9qOcQs1ndools4mH_fdcqzmXmheedw4PQM8FjQrB-Wy1nY4oJjCmVikl5hwZEM10CFuT-dnN4RKOUfnE_ACCoHqD3eTwlv4v7qpgG3267YhJDOh2OuYmhWPrtwYds_8M6NWFb9Hy774pPm-0TeqjtPvnRdQ_R-mu6mszLxc_se_KxKB3DkMsNYcCrjabUWgmKS2EFrThVTjrqqVJM1xWtOXaMYK4VWEm57wHgUlIlYYheL39jyo1Jrsne7VwMwbtsCCWEcdFD-AK5NqbU-toc2-Zg284QbM6STC_JnCWZq6S-8nKpNN77Gy6EBqkB_gCJjmC4</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Jungsuk Kwac</creator><creator>Flora, June</creator><creator>Rajagopal, Ram</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201401</creationdate><title>Household Energy Consumption Segmentation Using Hourly Data</title><author>Jungsuk Kwac ; Flora, June ; Rajagopal, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b1435db922aa738576a62d528c7c2e28849fd2f50c4105983a725ed5235772873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>demand response</topic><topic>Dictionaries</topic><topic>Electricity</topic><topic>Encoding</topic><topic>segmentation</topic><topic>Shape</topic><topic>smart meter data</topic><topic>Sociology</topic><topic>Statistics</topic><topic>variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jungsuk Kwac</creatorcontrib><creatorcontrib>Flora, June</creatorcontrib><creatorcontrib>Rajagopal, Ram</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jungsuk Kwac</au><au>Flora, June</au><au>Rajagopal, Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Household Energy Consumption Segmentation Using Hourly Data</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2014-01</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>420</spage><epage>430</epage><pages>420-430</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TSG.2013.2278477</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2014-01, Vol.5 (1), p.420-430
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_6693793
source IEEE Xplore
subjects Clustering
Clustering algorithms
demand response
Dictionaries
Electricity
Encoding
segmentation
Shape
smart meter data
Sociology
Statistics
variability
title Household Energy Consumption Segmentation Using Hourly Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Household%20Energy%20Consumption%20Segmentation%20Using%20Hourly%20Data&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Jungsuk%20Kwac&rft.date=2014-01&rft.volume=5&rft.issue=1&rft.spage=420&rft.epage=430&rft.pages=420-430&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2013.2278477&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2013_2278477%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6693793&rfr_iscdi=true