Household Energy Consumption Segmentation Using Hourly Data
The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape diction...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2014-01, Vol.5 (1), p.420-430 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 430 |
---|---|
container_issue | 1 |
container_start_page | 420 |
container_title | IEEE transactions on smart grid |
container_volume | 5 |
creator | Jungsuk Kwac Flora, June Rajagopal, Ram |
description | The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets. |
doi_str_mv | 10.1109/TSG.2013.2278477 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6693793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6693793</ieee_id><sourcerecordid>10_1109_TSG_2013_2278477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b1435db922aa738576a62d528c7c2e28849fd2f50c4105983a725ed5235772873</originalsourceid><addsrcrecordid>eNo9kE1rAjEQhkNpoWK9F3pZel-bZPJJT8VaLQg9qOcQs1ndools4mH_fdcqzmXmheedw4PQM8FjQrB-Wy1nY4oJjCmVikl5hwZEM10CFuT-dnN4RKOUfnE_ACCoHqD3eTwlv4v7qpgG3267YhJDOh2OuYmhWPrtwYds_8M6NWFb9Hy774pPm-0TeqjtPvnRdQ_R-mu6mszLxc_se_KxKB3DkMsNYcCrjabUWgmKS2EFrThVTjrqqVJM1xWtOXaMYK4VWEm57wHgUlIlYYheL39jyo1Jrsne7VwMwbtsCCWEcdFD-AK5NqbU-toc2-Zg284QbM6STC_JnCWZq6S-8nKpNN77Gy6EBqkB_gCJjmC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Household Energy Consumption Segmentation Using Hourly Data</title><source>IEEE Xplore</source><creator>Jungsuk Kwac ; Flora, June ; Rajagopal, Ram</creator><creatorcontrib>Jungsuk Kwac ; Flora, June ; Rajagopal, Ram</creatorcontrib><description>The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2013.2278477</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Clustering ; Clustering algorithms ; demand response ; Dictionaries ; Electricity ; Encoding ; segmentation ; Shape ; smart meter data ; Sociology ; Statistics ; variability</subject><ispartof>IEEE transactions on smart grid, 2014-01, Vol.5 (1), p.420-430</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b1435db922aa738576a62d528c7c2e28849fd2f50c4105983a725ed5235772873</citedby><cites>FETCH-LOGICAL-c403t-b1435db922aa738576a62d528c7c2e28849fd2f50c4105983a725ed5235772873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6693793$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6693793$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1211456$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jungsuk Kwac</creatorcontrib><creatorcontrib>Flora, June</creatorcontrib><creatorcontrib>Rajagopal, Ram</creatorcontrib><title>Household Energy Consumption Segmentation Using Hourly Data</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.</description><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>demand response</subject><subject>Dictionaries</subject><subject>Electricity</subject><subject>Encoding</subject><subject>segmentation</subject><subject>Shape</subject><subject>smart meter data</subject><subject>Sociology</subject><subject>Statistics</subject><subject>variability</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rAjEQhkNpoWK9F3pZel-bZPJJT8VaLQg9qOcQs1ndools4mH_fdcqzmXmheedw4PQM8FjQrB-Wy1nY4oJjCmVikl5hwZEM10CFuT-dnN4RKOUfnE_ACCoHqD3eTwlv4v7qpgG3267YhJDOh2OuYmhWPrtwYds_8M6NWFb9Hy774pPm-0TeqjtPvnRdQ_R-mu6mszLxc_se_KxKB3DkMsNYcCrjabUWgmKS2EFrThVTjrqqVJM1xWtOXaMYK4VWEm57wHgUlIlYYheL39jyo1Jrsne7VwMwbtsCCWEcdFD-AK5NqbU-toc2-Zg284QbM6STC_JnCWZq6S-8nKpNN77Gy6EBqkB_gCJjmC4</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Jungsuk Kwac</creator><creator>Flora, June</creator><creator>Rajagopal, Ram</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201401</creationdate><title>Household Energy Consumption Segmentation Using Hourly Data</title><author>Jungsuk Kwac ; Flora, June ; Rajagopal, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b1435db922aa738576a62d528c7c2e28849fd2f50c4105983a725ed5235772873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>demand response</topic><topic>Dictionaries</topic><topic>Electricity</topic><topic>Encoding</topic><topic>segmentation</topic><topic>Shape</topic><topic>smart meter data</topic><topic>Sociology</topic><topic>Statistics</topic><topic>variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jungsuk Kwac</creatorcontrib><creatorcontrib>Flora, June</creatorcontrib><creatorcontrib>Rajagopal, Ram</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jungsuk Kwac</au><au>Flora, June</au><au>Rajagopal, Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Household Energy Consumption Segmentation Using Hourly Data</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2014-01</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>420</spage><epage>430</epage><pages>420-430</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TSG.2013.2278477</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2014-01, Vol.5 (1), p.420-430 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_ieee_primary_6693793 |
source | IEEE Xplore |
subjects | Clustering Clustering algorithms demand response Dictionaries Electricity Encoding segmentation Shape smart meter data Sociology Statistics variability |
title | Household Energy Consumption Segmentation Using Hourly Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Household%20Energy%20Consumption%20Segmentation%20Using%20Hourly%20Data&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Jungsuk%20Kwac&rft.date=2014-01&rft.volume=5&rft.issue=1&rft.spage=420&rft.epage=430&rft.pages=420-430&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2013.2278477&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2013_2278477%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6693793&rfr_iscdi=true |