Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene

This paper presents a novel inverse synthetic aperture radar (ISAR) imaging method by exploiting the inherent continuity of the scatterers on the target scene to obtain enhanced target images within a Bayesian framework. A simplified radar system is utilized by transmitting the sparse probing freque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2014-09, Vol.52 (9), p.5736-5750
Hauptverfasser: Wang, Lu, Zhao, Lifan, Bi, Guoan, Wan, Chunru, Yang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5750
container_issue 9
container_start_page 5736
container_title IEEE transactions on geoscience and remote sensing
container_volume 52
creator Wang, Lu
Zhao, Lifan
Bi, Guoan
Wan, Chunru
Yang, Lei
description This paper presents a novel inverse synthetic aperture radar (ISAR) imaging method by exploiting the inherent continuity of the scatterers on the target scene to obtain enhanced target images within a Bayesian framework. A simplified radar system is utilized by transmitting the sparse probing frequency signal, where the ISAR imaging problem can be converted to deal with underdetermined linear inverse scattering. Following the Bayesian compressive sensing (BCS) theory, a hierarchical Bayesian prior is employed to model the scatterers in the range-Doppler plane. In contrast to the independent prior on each scatterer in the conventional BCS, a correlated prior is proposed to statistically encourage the continuity structure of the scatterers in the target region. To overcome the intractability of the posterior distribution, the Gibbs sampling strategy is used for Bayesian inference. The parameters of the signal model are inferred efficiently from samples obtained by the Gibbs sampler. Because the proposed method is a data-driven learning process, the tedious parameter tuning process required by the convex optimization-based approaches can be avoided. Both the synthetic and the experimental results demonstrate that the proposed algorithm can achieve substantial improvements in the scenarios of limited measurements and low signal-to-noise ratio compared with other reported algorithms for ISAR imaging problems.
doi_str_mv 10.1109/TGRS.2013.2292074
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6691948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6691948</ieee_id><sourcerecordid>1620098362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-6d60be8bc988143c344e86bc8419b9765fec8845e26b4f55634dba99027c489a3</originalsourceid><addsrcrecordid>eNqFkU1rwkAQhpfSQq3tDyi9BHrpJXZnv7J7FFErCAW152WzTjSiic0mUP99kyo99NLTfPC8A8NDyCPQAQA1r6vpYjlgFPiAMcNoIq5ID6TUMVVCXJMeBaNipg27JXch7CgFISHpkcm42LrC4zqaLYeLaHZwm7zYROkpGn8d92Ved1O9xWhUFm3f5PUpKrOfzcpVG6yjpccC78lN5vYBHy61Tz4m49XoLZ6_T2ej4Tz2Quk6VmtFU9SpN1qD4J4LgVqlXgswqUmUzNBrLSQylYpMSsXFOnXGUJZ4oY3jffJyvnusys8GQ20PefC437sCyyZYSBLKuU44-x9VjFKjuerQ5z_ormyqon3EghTScA2JbCk4U74qQ6gws8cqP7jqZIHaToLtJNhOgr1IaDNP50yOiL-8UgaM0PwbXrp_4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545938175</pqid></control><display><type>article</type><title>Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Lu ; Zhao, Lifan ; Bi, Guoan ; Wan, Chunru ; Yang, Lei</creator><creatorcontrib>Wang, Lu ; Zhao, Lifan ; Bi, Guoan ; Wan, Chunru ; Yang, Lei</creatorcontrib><description>This paper presents a novel inverse synthetic aperture radar (ISAR) imaging method by exploiting the inherent continuity of the scatterers on the target scene to obtain enhanced target images within a Bayesian framework. A simplified radar system is utilized by transmitting the sparse probing frequency signal, where the ISAR imaging problem can be converted to deal with underdetermined linear inverse scattering. Following the Bayesian compressive sensing (BCS) theory, a hierarchical Bayesian prior is employed to model the scatterers in the range-Doppler plane. In contrast to the independent prior on each scatterer in the conventional BCS, a correlated prior is proposed to statistically encourage the continuity structure of the scatterers in the target region. To overcome the intractability of the posterior distribution, the Gibbs sampling strategy is used for Bayesian inference. The parameters of the signal model are inferred efficiently from samples obtained by the Gibbs sampler. Because the proposed method is a data-driven learning process, the tedious parameter tuning process required by the convex optimization-based approaches can be avoided. Both the synthetic and the experimental results demonstrate that the proposed algorithm can achieve substantial improvements in the scenarios of limited measurements and low signal-to-noise ratio compared with other reported algorithms for ISAR imaging problems.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2013.2292074</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayes methods ; Bayesian analysis ; Bayesian compressive sensing (BCS) ; Coherence ; Continuity ; Dictionaries ; Gibbs sampler ; Imaging ; Inference ; inverse synthetic aperture radar (ISAR) imaging ; Mathematical models ; Radar imaging ; Statistical methods ; structure of the continuity ; Tuning ; Vectors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2014-09, Vol.52 (9), p.5736-5750</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-6d60be8bc988143c344e86bc8419b9765fec8845e26b4f55634dba99027c489a3</citedby><cites>FETCH-LOGICAL-c468t-6d60be8bc988143c344e86bc8419b9765fec8845e26b4f55634dba99027c489a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6691948$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6691948$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><creatorcontrib>Bi, Guoan</creatorcontrib><creatorcontrib>Wan, Chunru</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><title>Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents a novel inverse synthetic aperture radar (ISAR) imaging method by exploiting the inherent continuity of the scatterers on the target scene to obtain enhanced target images within a Bayesian framework. A simplified radar system is utilized by transmitting the sparse probing frequency signal, where the ISAR imaging problem can be converted to deal with underdetermined linear inverse scattering. Following the Bayesian compressive sensing (BCS) theory, a hierarchical Bayesian prior is employed to model the scatterers in the range-Doppler plane. In contrast to the independent prior on each scatterer in the conventional BCS, a correlated prior is proposed to statistically encourage the continuity structure of the scatterers in the target region. To overcome the intractability of the posterior distribution, the Gibbs sampling strategy is used for Bayesian inference. The parameters of the signal model are inferred efficiently from samples obtained by the Gibbs sampler. Because the proposed method is a data-driven learning process, the tedious parameter tuning process required by the convex optimization-based approaches can be avoided. Both the synthetic and the experimental results demonstrate that the proposed algorithm can achieve substantial improvements in the scenarios of limited measurements and low signal-to-noise ratio compared with other reported algorithms for ISAR imaging problems.</description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian compressive sensing (BCS)</subject><subject>Coherence</subject><subject>Continuity</subject><subject>Dictionaries</subject><subject>Gibbs sampler</subject><subject>Imaging</subject><subject>Inference</subject><subject>inverse synthetic aperture radar (ISAR) imaging</subject><subject>Mathematical models</subject><subject>Radar imaging</subject><subject>Statistical methods</subject><subject>structure of the continuity</subject><subject>Tuning</subject><subject>Vectors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1rwkAQhpfSQq3tDyi9BHrpJXZnv7J7FFErCAW152WzTjSiic0mUP99kyo99NLTfPC8A8NDyCPQAQA1r6vpYjlgFPiAMcNoIq5ID6TUMVVCXJMeBaNipg27JXch7CgFISHpkcm42LrC4zqaLYeLaHZwm7zYROkpGn8d92Ved1O9xWhUFm3f5PUpKrOfzcpVG6yjpccC78lN5vYBHy61Tz4m49XoLZ6_T2ej4Tz2Quk6VmtFU9SpN1qD4J4LgVqlXgswqUmUzNBrLSQylYpMSsXFOnXGUJZ4oY3jffJyvnusys8GQ20PefC437sCyyZYSBLKuU44-x9VjFKjuerQ5z_ormyqon3EghTScA2JbCk4U74qQ6gws8cqP7jqZIHaToLtJNhOgr1IaDNP50yOiL-8UgaM0PwbXrp_4Q</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Wang, Lu</creator><creator>Zhao, Lifan</creator><creator>Bi, Guoan</creator><creator>Wan, Chunru</creator><creator>Yang, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20140901</creationdate><title>Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene</title><author>Wang, Lu ; Zhao, Lifan ; Bi, Guoan ; Wan, Chunru ; Yang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-6d60be8bc988143c344e86bc8419b9765fec8845e26b4f55634dba99027c489a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian compressive sensing (BCS)</topic><topic>Coherence</topic><topic>Continuity</topic><topic>Dictionaries</topic><topic>Gibbs sampler</topic><topic>Imaging</topic><topic>Inference</topic><topic>inverse synthetic aperture radar (ISAR) imaging</topic><topic>Mathematical models</topic><topic>Radar imaging</topic><topic>Statistical methods</topic><topic>structure of the continuity</topic><topic>Tuning</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><creatorcontrib>Bi, Guoan</creatorcontrib><creatorcontrib>Wan, Chunru</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Lu</au><au>Zhao, Lifan</au><au>Bi, Guoan</au><au>Wan, Chunru</au><au>Yang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>52</volume><issue>9</issue><spage>5736</spage><epage>5750</epage><pages>5736-5750</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents a novel inverse synthetic aperture radar (ISAR) imaging method by exploiting the inherent continuity of the scatterers on the target scene to obtain enhanced target images within a Bayesian framework. A simplified radar system is utilized by transmitting the sparse probing frequency signal, where the ISAR imaging problem can be converted to deal with underdetermined linear inverse scattering. Following the Bayesian compressive sensing (BCS) theory, a hierarchical Bayesian prior is employed to model the scatterers in the range-Doppler plane. In contrast to the independent prior on each scatterer in the conventional BCS, a correlated prior is proposed to statistically encourage the continuity structure of the scatterers in the target region. To overcome the intractability of the posterior distribution, the Gibbs sampling strategy is used for Bayesian inference. The parameters of the signal model are inferred efficiently from samples obtained by the Gibbs sampler. Because the proposed method is a data-driven learning process, the tedious parameter tuning process required by the convex optimization-based approaches can be avoided. Both the synthetic and the experimental results demonstrate that the proposed algorithm can achieve substantial improvements in the scenarios of limited measurements and low signal-to-noise ratio compared with other reported algorithms for ISAR imaging problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2013.2292074</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2014-09, Vol.52 (9), p.5736-5750
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_6691948
source IEEE Electronic Library (IEL)
subjects Algorithms
Bayes methods
Bayesian analysis
Bayesian compressive sensing (BCS)
Coherence
Continuity
Dictionaries
Gibbs sampler
Imaging
Inference
inverse synthetic aperture radar (ISAR) imaging
Mathematical models
Radar imaging
Statistical methods
structure of the continuity
Tuning
Vectors
title Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20ISAR%20Imaging%20by%20Exploiting%20the%20Continuity%20of%20the%20Target%20Scene&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wang,%20Lu&rft.date=2014-09-01&rft.volume=52&rft.issue=9&rft.spage=5736&rft.epage=5750&rft.pages=5736-5750&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2013.2292074&rft_dat=%3Cproquest_RIE%3E1620098362%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545938175&rft_id=info:pmid/&rft_ieee_id=6691948&rfr_iscdi=true