Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene
This paper presents a novel inverse synthetic aperture radar (ISAR) imaging method by exploiting the inherent continuity of the scatterers on the target scene to obtain enhanced target images within a Bayesian framework. A simplified radar system is utilized by transmitting the sparse probing freque...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2014-09, Vol.52 (9), p.5736-5750 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5750 |
---|---|
container_issue | 9 |
container_start_page | 5736 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 52 |
creator | Wang, Lu Zhao, Lifan Bi, Guoan Wan, Chunru Yang, Lei |
description | This paper presents a novel inverse synthetic aperture radar (ISAR) imaging method by exploiting the inherent continuity of the scatterers on the target scene to obtain enhanced target images within a Bayesian framework. A simplified radar system is utilized by transmitting the sparse probing frequency signal, where the ISAR imaging problem can be converted to deal with underdetermined linear inverse scattering. Following the Bayesian compressive sensing (BCS) theory, a hierarchical Bayesian prior is employed to model the scatterers in the range-Doppler plane. In contrast to the independent prior on each scatterer in the conventional BCS, a correlated prior is proposed to statistically encourage the continuity structure of the scatterers in the target region. To overcome the intractability of the posterior distribution, the Gibbs sampling strategy is used for Bayesian inference. The parameters of the signal model are inferred efficiently from samples obtained by the Gibbs sampler. Because the proposed method is a data-driven learning process, the tedious parameter tuning process required by the convex optimization-based approaches can be avoided. Both the synthetic and the experimental results demonstrate that the proposed algorithm can achieve substantial improvements in the scenarios of limited measurements and low signal-to-noise ratio compared with other reported algorithms for ISAR imaging problems. |
doi_str_mv | 10.1109/TGRS.2013.2292074 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6691948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6691948</ieee_id><sourcerecordid>1620098362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-6d60be8bc988143c344e86bc8419b9765fec8845e26b4f55634dba99027c489a3</originalsourceid><addsrcrecordid>eNqFkU1rwkAQhpfSQq3tDyi9BHrpJXZnv7J7FFErCAW152WzTjSiic0mUP99kyo99NLTfPC8A8NDyCPQAQA1r6vpYjlgFPiAMcNoIq5ID6TUMVVCXJMeBaNipg27JXch7CgFISHpkcm42LrC4zqaLYeLaHZwm7zYROkpGn8d92Ved1O9xWhUFm3f5PUpKrOfzcpVG6yjpccC78lN5vYBHy61Tz4m49XoLZ6_T2ej4Tz2Quk6VmtFU9SpN1qD4J4LgVqlXgswqUmUzNBrLSQylYpMSsXFOnXGUJZ4oY3jffJyvnusys8GQ20PefC437sCyyZYSBLKuU44-x9VjFKjuerQ5z_ormyqon3EghTScA2JbCk4U74qQ6gws8cqP7jqZIHaToLtJNhOgr1IaDNP50yOiL-8UgaM0PwbXrp_4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545938175</pqid></control><display><type>article</type><title>Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Lu ; Zhao, Lifan ; Bi, Guoan ; Wan, Chunru ; Yang, Lei</creator><creatorcontrib>Wang, Lu ; Zhao, Lifan ; Bi, Guoan ; Wan, Chunru ; Yang, Lei</creatorcontrib><description>This paper presents a novel inverse synthetic aperture radar (ISAR) imaging method by exploiting the inherent continuity of the scatterers on the target scene to obtain enhanced target images within a Bayesian framework. A simplified radar system is utilized by transmitting the sparse probing frequency signal, where the ISAR imaging problem can be converted to deal with underdetermined linear inverse scattering. Following the Bayesian compressive sensing (BCS) theory, a hierarchical Bayesian prior is employed to model the scatterers in the range-Doppler plane. In contrast to the independent prior on each scatterer in the conventional BCS, a correlated prior is proposed to statistically encourage the continuity structure of the scatterers in the target region. To overcome the intractability of the posterior distribution, the Gibbs sampling strategy is used for Bayesian inference. The parameters of the signal model are inferred efficiently from samples obtained by the Gibbs sampler. Because the proposed method is a data-driven learning process, the tedious parameter tuning process required by the convex optimization-based approaches can be avoided. Both the synthetic and the experimental results demonstrate that the proposed algorithm can achieve substantial improvements in the scenarios of limited measurements and low signal-to-noise ratio compared with other reported algorithms for ISAR imaging problems.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2013.2292074</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayes methods ; Bayesian analysis ; Bayesian compressive sensing (BCS) ; Coherence ; Continuity ; Dictionaries ; Gibbs sampler ; Imaging ; Inference ; inverse synthetic aperture radar (ISAR) imaging ; Mathematical models ; Radar imaging ; Statistical methods ; structure of the continuity ; Tuning ; Vectors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2014-09, Vol.52 (9), p.5736-5750</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-6d60be8bc988143c344e86bc8419b9765fec8845e26b4f55634dba99027c489a3</citedby><cites>FETCH-LOGICAL-c468t-6d60be8bc988143c344e86bc8419b9765fec8845e26b4f55634dba99027c489a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6691948$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6691948$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><creatorcontrib>Bi, Guoan</creatorcontrib><creatorcontrib>Wan, Chunru</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><title>Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents a novel inverse synthetic aperture radar (ISAR) imaging method by exploiting the inherent continuity of the scatterers on the target scene to obtain enhanced target images within a Bayesian framework. A simplified radar system is utilized by transmitting the sparse probing frequency signal, where the ISAR imaging problem can be converted to deal with underdetermined linear inverse scattering. Following the Bayesian compressive sensing (BCS) theory, a hierarchical Bayesian prior is employed to model the scatterers in the range-Doppler plane. In contrast to the independent prior on each scatterer in the conventional BCS, a correlated prior is proposed to statistically encourage the continuity structure of the scatterers in the target region. To overcome the intractability of the posterior distribution, the Gibbs sampling strategy is used for Bayesian inference. The parameters of the signal model are inferred efficiently from samples obtained by the Gibbs sampler. Because the proposed method is a data-driven learning process, the tedious parameter tuning process required by the convex optimization-based approaches can be avoided. Both the synthetic and the experimental results demonstrate that the proposed algorithm can achieve substantial improvements in the scenarios of limited measurements and low signal-to-noise ratio compared with other reported algorithms for ISAR imaging problems.</description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian compressive sensing (BCS)</subject><subject>Coherence</subject><subject>Continuity</subject><subject>Dictionaries</subject><subject>Gibbs sampler</subject><subject>Imaging</subject><subject>Inference</subject><subject>inverse synthetic aperture radar (ISAR) imaging</subject><subject>Mathematical models</subject><subject>Radar imaging</subject><subject>Statistical methods</subject><subject>structure of the continuity</subject><subject>Tuning</subject><subject>Vectors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1rwkAQhpfSQq3tDyi9BHrpJXZnv7J7FFErCAW152WzTjSiic0mUP99kyo99NLTfPC8A8NDyCPQAQA1r6vpYjlgFPiAMcNoIq5ID6TUMVVCXJMeBaNipg27JXch7CgFISHpkcm42LrC4zqaLYeLaHZwm7zYROkpGn8d92Ved1O9xWhUFm3f5PUpKrOfzcpVG6yjpccC78lN5vYBHy61Tz4m49XoLZ6_T2ej4Tz2Quk6VmtFU9SpN1qD4J4LgVqlXgswqUmUzNBrLSQylYpMSsXFOnXGUJZ4oY3jffJyvnusys8GQ20PefC437sCyyZYSBLKuU44-x9VjFKjuerQ5z_ormyqon3EghTScA2JbCk4U74qQ6gws8cqP7jqZIHaToLtJNhOgr1IaDNP50yOiL-8UgaM0PwbXrp_4Q</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Wang, Lu</creator><creator>Zhao, Lifan</creator><creator>Bi, Guoan</creator><creator>Wan, Chunru</creator><creator>Yang, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20140901</creationdate><title>Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene</title><author>Wang, Lu ; Zhao, Lifan ; Bi, Guoan ; Wan, Chunru ; Yang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-6d60be8bc988143c344e86bc8419b9765fec8845e26b4f55634dba99027c489a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian compressive sensing (BCS)</topic><topic>Coherence</topic><topic>Continuity</topic><topic>Dictionaries</topic><topic>Gibbs sampler</topic><topic>Imaging</topic><topic>Inference</topic><topic>inverse synthetic aperture radar (ISAR) imaging</topic><topic>Mathematical models</topic><topic>Radar imaging</topic><topic>Statistical methods</topic><topic>structure of the continuity</topic><topic>Tuning</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><creatorcontrib>Bi, Guoan</creatorcontrib><creatorcontrib>Wan, Chunru</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Lu</au><au>Zhao, Lifan</au><au>Bi, Guoan</au><au>Wan, Chunru</au><au>Yang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>52</volume><issue>9</issue><spage>5736</spage><epage>5750</epage><pages>5736-5750</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents a novel inverse synthetic aperture radar (ISAR) imaging method by exploiting the inherent continuity of the scatterers on the target scene to obtain enhanced target images within a Bayesian framework. A simplified radar system is utilized by transmitting the sparse probing frequency signal, where the ISAR imaging problem can be converted to deal with underdetermined linear inverse scattering. Following the Bayesian compressive sensing (BCS) theory, a hierarchical Bayesian prior is employed to model the scatterers in the range-Doppler plane. In contrast to the independent prior on each scatterer in the conventional BCS, a correlated prior is proposed to statistically encourage the continuity structure of the scatterers in the target region. To overcome the intractability of the posterior distribution, the Gibbs sampling strategy is used for Bayesian inference. The parameters of the signal model are inferred efficiently from samples obtained by the Gibbs sampler. Because the proposed method is a data-driven learning process, the tedious parameter tuning process required by the convex optimization-based approaches can be avoided. Both the synthetic and the experimental results demonstrate that the proposed algorithm can achieve substantial improvements in the scenarios of limited measurements and low signal-to-noise ratio compared with other reported algorithms for ISAR imaging problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2013.2292074</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2014-09, Vol.52 (9), p.5736-5750 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_6691948 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bayes methods Bayesian analysis Bayesian compressive sensing (BCS) Coherence Continuity Dictionaries Gibbs sampler Imaging Inference inverse synthetic aperture radar (ISAR) imaging Mathematical models Radar imaging Statistical methods structure of the continuity Tuning Vectors |
title | Enhanced ISAR Imaging by Exploiting the Continuity of the Target Scene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20ISAR%20Imaging%20by%20Exploiting%20the%20Continuity%20of%20the%20Target%20Scene&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wang,%20Lu&rft.date=2014-09-01&rft.volume=52&rft.issue=9&rft.spage=5736&rft.epage=5750&rft.pages=5736-5750&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2013.2292074&rft_dat=%3Cproquest_RIE%3E1620098362%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545938175&rft_id=info:pmid/&rft_ieee_id=6691948&rfr_iscdi=true |