Learning from multiple data sets with different missing attributes and privacy policies: Parallel distributed fuzzy genetics-based machine learning approach
This paper discusses parallel distributed genetics-based machine learning (GBML) of fuzzy rule-based classifiers from multiple data sets. We assume that each data set has a similar but different set of attributes. In other words, each data set has different missing attributes. Our task is the design...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | |
container_start_page | 63 |
container_title | |
container_volume | |
creator | Ishibuchi, Hisao Yamane, Masakazu Nojima, Yusuke |
description | This paper discusses parallel distributed genetics-based machine learning (GBML) of fuzzy rule-based classifiers from multiple data sets. We assume that each data set has a similar but different set of attributes. In other words, each data set has different missing attributes. Our task is the design of a fuzzy rule-based classifier from those data sets. In this paper, we first show that fuzzy rules can handle missing attributes easily. Next we explain how parallel distributed fuzzy GBML can handle multiple data sets with different missing attributes. Then we examine the accuracy of obtained fuzzy rule-based classifiers from various settings of available training data such as a single data set with no missing attribute and multiple data sets with many missing attributes. Experimental results show that the use of multiple data sets often increases the accuracy of obtained fuzzy rule-based classifiers even when they have missing attributes. We also discuss the learning from a data set under a severe privacy preserving policy where only the error rate of each candidate classifier is available. It is assumed that no information about each individual pattern is available. This means that we cannot use any information on the class label or the attribute values of each pattern. We explain how such a black-box data set can be utilized for classifier design. |
doi_str_mv | 10.1109/BigData.2013.6691735 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6691735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6691735</ieee_id><sourcerecordid>6691735</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4792d62fd4cf998d130047c0ef6e55fd3292944c2bd0d62a8feda7e2cf6f13153</originalsourceid><addsrcrecordid>eNo1kEtOAzEQRM0CiV9OAAtfYII_M-OYHYSvFAkWILGLOnY7MfJMRrYDSs7CYTEirEoqvS5VNSEXnI05Z_ryxi9vIcNYMC7Hbau5ks0BOeG10poLLd-PyCilD8YYV6qpVX1MvmcIsff9krq47mi3CdkPAaktOTRhTvTL5xW13jmM2Gfa-ZR-ccg5-sUmY6LQWzpE_wlmS4d18MZjuqIvECEEDOU27VFL3Wa329Il9pi9SdUCUjE7MCvfIw3_VWAY4rqYZ-TQQUg42uspebu_e50-VrPnh6fp9azyXDW5KvOEbYWztXFaTyyXjNXKMHQtNo2zUmih69qIhWWFg4lDCwqFca3jkjfylJz_5XpEnJcpHcTtfP9A-QMS6G0x</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning from multiple data sets with different missing attributes and privacy policies: Parallel distributed fuzzy genetics-based machine learning approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ishibuchi, Hisao ; Yamane, Masakazu ; Nojima, Yusuke</creator><creatorcontrib>Ishibuchi, Hisao ; Yamane, Masakazu ; Nojima, Yusuke</creatorcontrib><description>This paper discusses parallel distributed genetics-based machine learning (GBML) of fuzzy rule-based classifiers from multiple data sets. We assume that each data set has a similar but different set of attributes. In other words, each data set has different missing attributes. Our task is the design of a fuzzy rule-based classifier from those data sets. In this paper, we first show that fuzzy rules can handle missing attributes easily. Next we explain how parallel distributed fuzzy GBML can handle multiple data sets with different missing attributes. Then we examine the accuracy of obtained fuzzy rule-based classifiers from various settings of available training data such as a single data set with no missing attribute and multiple data sets with many missing attributes. Experimental results show that the use of multiple data sets often increases the accuracy of obtained fuzzy rule-based classifiers even when they have missing attributes. We also discuss the learning from a data set under a severe privacy preserving policy where only the error rate of each candidate classifier is available. It is assumed that no information about each individual pattern is available. This means that we cannot use any information on the class label or the attribute values of each pattern. We explain how such a black-box data set can be utilized for classifier design.</description><identifier>EISBN: 147991293X</identifier><identifier>EISBN: 9781479912933</identifier><identifier>DOI: 10.1109/BigData.2013.6691735</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Data privacy ; Distributed databases ; Evolutionary algorithms ; fuzzy rule-based classifiers ; Fuzzy sets ; genetics-based machine learning ; horizontally partitioned data sets ; parallel distributed implementation ; Sociology ; Statistics ; Training data</subject><ispartof>2013 IEEE International Conference on Big Data, 2013, p.63-70</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6691735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6691735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ishibuchi, Hisao</creatorcontrib><creatorcontrib>Yamane, Masakazu</creatorcontrib><creatorcontrib>Nojima, Yusuke</creatorcontrib><title>Learning from multiple data sets with different missing attributes and privacy policies: Parallel distributed fuzzy genetics-based machine learning approach</title><title>2013 IEEE International Conference on Big Data</title><addtitle>BigData</addtitle><description>This paper discusses parallel distributed genetics-based machine learning (GBML) of fuzzy rule-based classifiers from multiple data sets. We assume that each data set has a similar but different set of attributes. In other words, each data set has different missing attributes. Our task is the design of a fuzzy rule-based classifier from those data sets. In this paper, we first show that fuzzy rules can handle missing attributes easily. Next we explain how parallel distributed fuzzy GBML can handle multiple data sets with different missing attributes. Then we examine the accuracy of obtained fuzzy rule-based classifiers from various settings of available training data such as a single data set with no missing attribute and multiple data sets with many missing attributes. Experimental results show that the use of multiple data sets often increases the accuracy of obtained fuzzy rule-based classifiers even when they have missing attributes. We also discuss the learning from a data set under a severe privacy preserving policy where only the error rate of each candidate classifier is available. It is assumed that no information about each individual pattern is available. This means that we cannot use any information on the class label or the attribute values of each pattern. We explain how such a black-box data set can be utilized for classifier design.</description><subject>Classification algorithms</subject><subject>Data privacy</subject><subject>Distributed databases</subject><subject>Evolutionary algorithms</subject><subject>fuzzy rule-based classifiers</subject><subject>Fuzzy sets</subject><subject>genetics-based machine learning</subject><subject>horizontally partitioned data sets</subject><subject>parallel distributed implementation</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Training data</subject><isbn>147991293X</isbn><isbn>9781479912933</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtOAzEQRM0CiV9OAAtfYII_M-OYHYSvFAkWILGLOnY7MfJMRrYDSs7CYTEirEoqvS5VNSEXnI05Z_ryxi9vIcNYMC7Hbau5ks0BOeG10poLLd-PyCilD8YYV6qpVX1MvmcIsff9krq47mi3CdkPAaktOTRhTvTL5xW13jmM2Gfa-ZR-ccg5-sUmY6LQWzpE_wlmS4d18MZjuqIvECEEDOU27VFL3Wa329Il9pi9SdUCUjE7MCvfIw3_VWAY4rqYZ-TQQUg42uspebu_e50-VrPnh6fp9azyXDW5KvOEbYWztXFaTyyXjNXKMHQtNo2zUmih69qIhWWFg4lDCwqFca3jkjfylJz_5XpEnJcpHcTtfP9A-QMS6G0x</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Ishibuchi, Hisao</creator><creator>Yamane, Masakazu</creator><creator>Nojima, Yusuke</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201310</creationdate><title>Learning from multiple data sets with different missing attributes and privacy policies: Parallel distributed fuzzy genetics-based machine learning approach</title><author>Ishibuchi, Hisao ; Yamane, Masakazu ; Nojima, Yusuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4792d62fd4cf998d130047c0ef6e55fd3292944c2bd0d62a8feda7e2cf6f13153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classification algorithms</topic><topic>Data privacy</topic><topic>Distributed databases</topic><topic>Evolutionary algorithms</topic><topic>fuzzy rule-based classifiers</topic><topic>Fuzzy sets</topic><topic>genetics-based machine learning</topic><topic>horizontally partitioned data sets</topic><topic>parallel distributed implementation</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishibuchi, Hisao</creatorcontrib><creatorcontrib>Yamane, Masakazu</creatorcontrib><creatorcontrib>Nojima, Yusuke</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishibuchi, Hisao</au><au>Yamane, Masakazu</au><au>Nojima, Yusuke</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning from multiple data sets with different missing attributes and privacy policies: Parallel distributed fuzzy genetics-based machine learning approach</atitle><btitle>2013 IEEE International Conference on Big Data</btitle><stitle>BigData</stitle><date>2013-10</date><risdate>2013</risdate><spage>63</spage><epage>70</epage><pages>63-70</pages><eisbn>147991293X</eisbn><eisbn>9781479912933</eisbn><abstract>This paper discusses parallel distributed genetics-based machine learning (GBML) of fuzzy rule-based classifiers from multiple data sets. We assume that each data set has a similar but different set of attributes. In other words, each data set has different missing attributes. Our task is the design of a fuzzy rule-based classifier from those data sets. In this paper, we first show that fuzzy rules can handle missing attributes easily. Next we explain how parallel distributed fuzzy GBML can handle multiple data sets with different missing attributes. Then we examine the accuracy of obtained fuzzy rule-based classifiers from various settings of available training data such as a single data set with no missing attribute and multiple data sets with many missing attributes. Experimental results show that the use of multiple data sets often increases the accuracy of obtained fuzzy rule-based classifiers even when they have missing attributes. We also discuss the learning from a data set under a severe privacy preserving policy where only the error rate of each candidate classifier is available. It is assumed that no information about each individual pattern is available. This means that we cannot use any information on the class label or the attribute values of each pattern. We explain how such a black-box data set can be utilized for classifier design.</abstract><pub>IEEE</pub><doi>10.1109/BigData.2013.6691735</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 147991293X |
ispartof | 2013 IEEE International Conference on Big Data, 2013, p.63-70 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6691735 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification algorithms Data privacy Distributed databases Evolutionary algorithms fuzzy rule-based classifiers Fuzzy sets genetics-based machine learning horizontally partitioned data sets parallel distributed implementation Sociology Statistics Training data |
title | Learning from multiple data sets with different missing attributes and privacy policies: Parallel distributed fuzzy genetics-based machine learning approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20from%20multiple%20data%20sets%20with%20different%20missing%20attributes%20and%20privacy%20policies:%20Parallel%20distributed%20fuzzy%20genetics-based%20machine%20learning%20approach&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Big%20Data&rft.au=Ishibuchi,%20Hisao&rft.date=2013-10&rft.spage=63&rft.epage=70&rft.pages=63-70&rft_id=info:doi/10.1109/BigData.2013.6691735&rft_dat=%3Cieee_6IE%3E6691735%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=147991293X&rft.eisbn_list=9781479912933&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6691735&rfr_iscdi=true |