Parallel subgroup discovery on computing clusters - First results

Data mining tasks often have very high computational costs. In this paper, we present a parallel computation approach for the local pattern mining task of subgroup discovery. Unlike earlier related approaches, we do not distribute the data to be analyzed, but instead distribute portions of the overa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Trabold, Daniel, Grosskreutz, Henrik
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 579
container_issue
container_start_page 575
container_title
container_volume
creator Trabold, Daniel
Grosskreutz, Henrik
description Data mining tasks often have very high computational costs. In this paper, we present a parallel computation approach for the local pattern mining task of subgroup discovery. Unlike earlier related approaches, we do not distribute the data to be analyzed, but instead distribute portions of the overall search space to be considered on different computing nodes. Our approach has low communication costs, only submitting messages when new exceedingly good patterns are visited. While the paper describes work-in-progress, we already present first experiments, witnessing a speedup factor of about 34 on 64 computing units.
doi_str_mv 10.1109/BigData.2013.6691625
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6691625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6691625</ieee_id><sourcerecordid>6691625</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-fe51f2910d4090f2aa6dc115280ac66bc13ee1bd470034f6d1bfcfae75e1683d3</originalsourceid><addsrcrecordid>eNotz8FOAyEUQFFcmKi1X6ALfmBGHgxQlrVaNWmiC03cNQw8JhjamQBj0r93YVd3d5JLyD2wFoCZh8c4PNlqW85AtEoZUFxekBvotDHAjfi-IstSfhhjoLXsdHdN1h8225Qw0TL3Qx7nifpY3PiL-UTHI3XjYZprPA7UpblUzIU2dBtzqTRjmVMtt-Qy2FRwee6CfG2fPzevze795W2z3jURtKxNQAmBG2C-Y4YFbq3yDkDyFbNOqd6BQITed5ox0QXloQ8uWNQSQa2EFwty9-9GRNxPOR5sPu3Pl-IPMExKig</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel subgroup discovery on computing clusters - First results</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Trabold, Daniel ; Grosskreutz, Henrik</creator><creatorcontrib>Trabold, Daniel ; Grosskreutz, Henrik</creatorcontrib><description>Data mining tasks often have very high computational costs. In this paper, we present a parallel computation approach for the local pattern mining task of subgroup discovery. Unlike earlier related approaches, we do not distribute the data to be analyzed, but instead distribute portions of the overall search space to be considered on different computing nodes. Our approach has low communication costs, only submitting messages when new exceedingly good patterns are visited. While the paper describes work-in-progress, we already present first experiments, witnessing a speedup factor of about 34 on 64 computing units.</description><identifier>EISBN: 147991293X</identifier><identifier>EISBN: 9781479912933</identifier><identifier>DOI: 10.1109/BigData.2013.6691625</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Computational modeling ; Context ; Data mining ; Heuristic algorithms</subject><ispartof>2013 IEEE International Conference on Big Data, 2013, p.575-579</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6691625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6691625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Trabold, Daniel</creatorcontrib><creatorcontrib>Grosskreutz, Henrik</creatorcontrib><title>Parallel subgroup discovery on computing clusters - First results</title><title>2013 IEEE International Conference on Big Data</title><addtitle>BigData</addtitle><description>Data mining tasks often have very high computational costs. In this paper, we present a parallel computation approach for the local pattern mining task of subgroup discovery. Unlike earlier related approaches, we do not distribute the data to be analyzed, but instead distribute portions of the overall search space to be considered on different computing nodes. Our approach has low communication costs, only submitting messages when new exceedingly good patterns are visited. While the paper describes work-in-progress, we already present first experiments, witnessing a speedup factor of about 34 on 64 computing units.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Computational modeling</subject><subject>Context</subject><subject>Data mining</subject><subject>Heuristic algorithms</subject><isbn>147991293X</isbn><isbn>9781479912933</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotz8FOAyEUQFFcmKi1X6ALfmBGHgxQlrVaNWmiC03cNQw8JhjamQBj0r93YVd3d5JLyD2wFoCZh8c4PNlqW85AtEoZUFxekBvotDHAjfi-IstSfhhjoLXsdHdN1h8225Qw0TL3Qx7nifpY3PiL-UTHI3XjYZprPA7UpblUzIU2dBtzqTRjmVMtt-Qy2FRwee6CfG2fPzevze795W2z3jURtKxNQAmBG2C-Y4YFbq3yDkDyFbNOqd6BQITed5ox0QXloQ8uWNQSQa2EFwty9-9GRNxPOR5sPu3Pl-IPMExKig</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Trabold, Daniel</creator><creator>Grosskreutz, Henrik</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201310</creationdate><title>Parallel subgroup discovery on computing clusters - First results</title><author>Trabold, Daniel ; Grosskreutz, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-fe51f2910d4090f2aa6dc115280ac66bc13ee1bd470034f6d1bfcfae75e1683d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Computational modeling</topic><topic>Context</topic><topic>Data mining</topic><topic>Heuristic algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Trabold, Daniel</creatorcontrib><creatorcontrib>Grosskreutz, Henrik</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trabold, Daniel</au><au>Grosskreutz, Henrik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel subgroup discovery on computing clusters - First results</atitle><btitle>2013 IEEE International Conference on Big Data</btitle><stitle>BigData</stitle><date>2013-10</date><risdate>2013</risdate><spage>575</spage><epage>579</epage><pages>575-579</pages><eisbn>147991293X</eisbn><eisbn>9781479912933</eisbn><abstract>Data mining tasks often have very high computational costs. In this paper, we present a parallel computation approach for the local pattern mining task of subgroup discovery. Unlike earlier related approaches, we do not distribute the data to be analyzed, but instead distribute portions of the overall search space to be considered on different computing nodes. Our approach has low communication costs, only submitting messages when new exceedingly good patterns are visited. While the paper describes work-in-progress, we already present first experiments, witnessing a speedup factor of about 34 on 64 computing units.</abstract><pub>IEEE</pub><doi>10.1109/BigData.2013.6691625</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 147991293X
ispartof 2013 IEEE International Conference on Big Data, 2013, p.575-579
issn
language eng
recordid cdi_ieee_primary_6691625
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Clustering algorithms
Computational modeling
Context
Data mining
Heuristic algorithms
title Parallel subgroup discovery on computing clusters - First results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20subgroup%20discovery%20on%20computing%20clusters%20-%20First%20results&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Big%20Data&rft.au=Trabold,%20Daniel&rft.date=2013-10&rft.spage=575&rft.epage=579&rft.pages=575-579&rft_id=info:doi/10.1109/BigData.2013.6691625&rft_dat=%3Cieee_6IE%3E6691625%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=147991293X&rft.eisbn_list=9781479912933&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6691625&rfr_iscdi=true