Parallel subgroup discovery on computing clusters - First results
Data mining tasks often have very high computational costs. In this paper, we present a parallel computation approach for the local pattern mining task of subgroup discovery. Unlike earlier related approaches, we do not distribute the data to be analyzed, but instead distribute portions of the overa...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 579 |
---|---|
container_issue | |
container_start_page | 575 |
container_title | |
container_volume | |
creator | Trabold, Daniel Grosskreutz, Henrik |
description | Data mining tasks often have very high computational costs. In this paper, we present a parallel computation approach for the local pattern mining task of subgroup discovery. Unlike earlier related approaches, we do not distribute the data to be analyzed, but instead distribute portions of the overall search space to be considered on different computing nodes. Our approach has low communication costs, only submitting messages when new exceedingly good patterns are visited. While the paper describes work-in-progress, we already present first experiments, witnessing a speedup factor of about 34 on 64 computing units. |
doi_str_mv | 10.1109/BigData.2013.6691625 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6691625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6691625</ieee_id><sourcerecordid>6691625</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-fe51f2910d4090f2aa6dc115280ac66bc13ee1bd470034f6d1bfcfae75e1683d3</originalsourceid><addsrcrecordid>eNotz8FOAyEUQFFcmKi1X6ALfmBGHgxQlrVaNWmiC03cNQw8JhjamQBj0r93YVd3d5JLyD2wFoCZh8c4PNlqW85AtEoZUFxekBvotDHAjfi-IstSfhhjoLXsdHdN1h8225Qw0TL3Qx7nifpY3PiL-UTHI3XjYZprPA7UpblUzIU2dBtzqTRjmVMtt-Qy2FRwee6CfG2fPzevze795W2z3jURtKxNQAmBG2C-Y4YFbq3yDkDyFbNOqd6BQITed5ox0QXloQ8uWNQSQa2EFwty9-9GRNxPOR5sPu3Pl-IPMExKig</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel subgroup discovery on computing clusters - First results</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Trabold, Daniel ; Grosskreutz, Henrik</creator><creatorcontrib>Trabold, Daniel ; Grosskreutz, Henrik</creatorcontrib><description>Data mining tasks often have very high computational costs. In this paper, we present a parallel computation approach for the local pattern mining task of subgroup discovery. Unlike earlier related approaches, we do not distribute the data to be analyzed, but instead distribute portions of the overall search space to be considered on different computing nodes. Our approach has low communication costs, only submitting messages when new exceedingly good patterns are visited. While the paper describes work-in-progress, we already present first experiments, witnessing a speedup factor of about 34 on 64 computing units.</description><identifier>EISBN: 147991293X</identifier><identifier>EISBN: 9781479912933</identifier><identifier>DOI: 10.1109/BigData.2013.6691625</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Computational modeling ; Context ; Data mining ; Heuristic algorithms</subject><ispartof>2013 IEEE International Conference on Big Data, 2013, p.575-579</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6691625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6691625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Trabold, Daniel</creatorcontrib><creatorcontrib>Grosskreutz, Henrik</creatorcontrib><title>Parallel subgroup discovery on computing clusters - First results</title><title>2013 IEEE International Conference on Big Data</title><addtitle>BigData</addtitle><description>Data mining tasks often have very high computational costs. In this paper, we present a parallel computation approach for the local pattern mining task of subgroup discovery. Unlike earlier related approaches, we do not distribute the data to be analyzed, but instead distribute portions of the overall search space to be considered on different computing nodes. Our approach has low communication costs, only submitting messages when new exceedingly good patterns are visited. While the paper describes work-in-progress, we already present first experiments, witnessing a speedup factor of about 34 on 64 computing units.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Computational modeling</subject><subject>Context</subject><subject>Data mining</subject><subject>Heuristic algorithms</subject><isbn>147991293X</isbn><isbn>9781479912933</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotz8FOAyEUQFFcmKi1X6ALfmBGHgxQlrVaNWmiC03cNQw8JhjamQBj0r93YVd3d5JLyD2wFoCZh8c4PNlqW85AtEoZUFxekBvotDHAjfi-IstSfhhjoLXsdHdN1h8225Qw0TL3Qx7nifpY3PiL-UTHI3XjYZprPA7UpblUzIU2dBtzqTRjmVMtt-Qy2FRwee6CfG2fPzevze795W2z3jURtKxNQAmBG2C-Y4YFbq3yDkDyFbNOqd6BQITed5ox0QXloQ8uWNQSQa2EFwty9-9GRNxPOR5sPu3Pl-IPMExKig</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Trabold, Daniel</creator><creator>Grosskreutz, Henrik</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201310</creationdate><title>Parallel subgroup discovery on computing clusters - First results</title><author>Trabold, Daniel ; Grosskreutz, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-fe51f2910d4090f2aa6dc115280ac66bc13ee1bd470034f6d1bfcfae75e1683d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Computational modeling</topic><topic>Context</topic><topic>Data mining</topic><topic>Heuristic algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Trabold, Daniel</creatorcontrib><creatorcontrib>Grosskreutz, Henrik</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trabold, Daniel</au><au>Grosskreutz, Henrik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel subgroup discovery on computing clusters - First results</atitle><btitle>2013 IEEE International Conference on Big Data</btitle><stitle>BigData</stitle><date>2013-10</date><risdate>2013</risdate><spage>575</spage><epage>579</epage><pages>575-579</pages><eisbn>147991293X</eisbn><eisbn>9781479912933</eisbn><abstract>Data mining tasks often have very high computational costs. In this paper, we present a parallel computation approach for the local pattern mining task of subgroup discovery. Unlike earlier related approaches, we do not distribute the data to be analyzed, but instead distribute portions of the overall search space to be considered on different computing nodes. Our approach has low communication costs, only submitting messages when new exceedingly good patterns are visited. While the paper describes work-in-progress, we already present first experiments, witnessing a speedup factor of about 34 on 64 computing units.</abstract><pub>IEEE</pub><doi>10.1109/BigData.2013.6691625</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 147991293X |
ispartof | 2013 IEEE International Conference on Big Data, 2013, p.575-579 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6691625 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Clustering algorithms Computational modeling Context Data mining Heuristic algorithms |
title | Parallel subgroup discovery on computing clusters - First results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20subgroup%20discovery%20on%20computing%20clusters%20-%20First%20results&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Big%20Data&rft.au=Trabold,%20Daniel&rft.date=2013-10&rft.spage=575&rft.epage=579&rft.pages=575-579&rft_id=info:doi/10.1109/BigData.2013.6691625&rft_dat=%3Cieee_6IE%3E6691625%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=147991293X&rft.eisbn_list=9781479912933&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6691625&rfr_iscdi=true |