An on-chip learning, low-power probabilistic spiking neural network with long-term memory

This paper describes an analog probabilistic spiking neural network (PSNN) circuit for portable and implanted applications which especially require low power, small area and on-chip learning to ensure good mobility, body safety and continually accurate classification. The circuit is implemented usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hung-Yi Hsieh, Kea-Tiong Tang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 5
container_title
container_volume
creator Hung-Yi Hsieh
Kea-Tiong Tang
description This paper describes an analog probabilistic spiking neural network (PSNN) circuit for portable and implanted applications which especially require low power, small area and on-chip learning to ensure good mobility, body safety and continually accurate classification. The circuit is implemented using TSMC 0.18μm CMOS technology. Simulation results show that the circuit can learn linearly non-separable exclusive-or (xor) problem under 1V supply with only 3.8μW of power consumption. Long-term, multi-stage synaptic memory contains more information for a longer time in a single synapse. Comparison of the proposed PSNN with recent hardware neural networks is also provided.
doi_str_mv 10.1109/BioCAS.2013.6679626
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6679626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6679626</ieee_id><sourcerecordid>6679626</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c4687c3e4a48af44835a88861dd2c221b2acf9f817801037720b62f9f96e2ea13</originalsourceid><addsrcrecordid>eNotUMFOwzAUCwgkptEv2CUfQEZekr4kxzHBQJrEAThwmtIu3cLapkqLqv09ldjFtizbBxOyAL4E4PbxKcT16mMpOMglorYo8IpkVhtQ2toJIL8mM6ERmVKY30waUDLFRX5Hsr7_4ZwDGmE4zsj3qqWxZeUxdLT2LrWhPTzQOo6si6NPtEuxcEWoQz-EkvZdOE0B2vrf5OqJhjGmEx3DcJw67YENPjW08U1M53tyW7m699mF5-Tr5flz_cq275u39WrLAuh8YKVCo0vplVPGVUoZmTtjDMJ-L0ohoBCurGxlQBsOXGoteIFicix64R3IOVn87wbv_a5LoXHpvLscI_8A1lRV_w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An on-chip learning, low-power probabilistic spiking neural network with long-term memory</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hung-Yi Hsieh ; Kea-Tiong Tang</creator><creatorcontrib>Hung-Yi Hsieh ; Kea-Tiong Tang</creatorcontrib><description>This paper describes an analog probabilistic spiking neural network (PSNN) circuit for portable and implanted applications which especially require low power, small area and on-chip learning to ensure good mobility, body safety and continually accurate classification. The circuit is implemented using TSMC 0.18μm CMOS technology. Simulation results show that the circuit can learn linearly non-separable exclusive-or (xor) problem under 1V supply with only 3.8μW of power consumption. Long-term, multi-stage synaptic memory contains more information for a longer time in a single synapse. Comparison of the proposed PSNN with recent hardware neural networks is also provided.</description><identifier>ISSN: 2163-4025</identifier><identifier>EISSN: 2766-4465</identifier><identifier>EISBN: 9781479914715</identifier><identifier>EISBN: 1479914711</identifier><identifier>DOI: 10.1109/BioCAS.2013.6679626</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Neurons ; Power demand ; Probabilistic logic ; Training ; Very large scale integration</subject><ispartof>2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2013, p.5-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6679626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6679626$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hung-Yi Hsieh</creatorcontrib><creatorcontrib>Kea-Tiong Tang</creatorcontrib><title>An on-chip learning, low-power probabilistic spiking neural network with long-term memory</title><title>2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)</title><addtitle>BioCAS</addtitle><description>This paper describes an analog probabilistic spiking neural network (PSNN) circuit for portable and implanted applications which especially require low power, small area and on-chip learning to ensure good mobility, body safety and continually accurate classification. The circuit is implemented using TSMC 0.18μm CMOS technology. Simulation results show that the circuit can learn linearly non-separable exclusive-or (xor) problem under 1V supply with only 3.8μW of power consumption. Long-term, multi-stage synaptic memory contains more information for a longer time in a single synapse. Comparison of the proposed PSNN with recent hardware neural networks is also provided.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Neurons</subject><subject>Power demand</subject><subject>Probabilistic logic</subject><subject>Training</subject><subject>Very large scale integration</subject><issn>2163-4025</issn><issn>2766-4465</issn><isbn>9781479914715</isbn><isbn>1479914711</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMFOwzAUCwgkptEv2CUfQEZekr4kxzHBQJrEAThwmtIu3cLapkqLqv09ldjFtizbBxOyAL4E4PbxKcT16mMpOMglorYo8IpkVhtQ2toJIL8mM6ERmVKY30waUDLFRX5Hsr7_4ZwDGmE4zsj3qqWxZeUxdLT2LrWhPTzQOo6si6NPtEuxcEWoQz-EkvZdOE0B2vrf5OqJhjGmEx3DcJw67YENPjW08U1M53tyW7m699mF5-Tr5flz_cq275u39WrLAuh8YKVCo0vplVPGVUoZmTtjDMJ-L0ohoBCurGxlQBsOXGoteIFicix64R3IOVn87wbv_a5LoXHpvLscI_8A1lRV_w</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Hung-Yi Hsieh</creator><creator>Kea-Tiong Tang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201310</creationdate><title>An on-chip learning, low-power probabilistic spiking neural network with long-term memory</title><author>Hung-Yi Hsieh ; Kea-Tiong Tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c4687c3e4a48af44835a88861dd2c221b2acf9f817801037720b62f9f96e2ea13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Neurons</topic><topic>Power demand</topic><topic>Probabilistic logic</topic><topic>Training</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Hung-Yi Hsieh</creatorcontrib><creatorcontrib>Kea-Tiong Tang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hung-Yi Hsieh</au><au>Kea-Tiong Tang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An on-chip learning, low-power probabilistic spiking neural network with long-term memory</atitle><btitle>2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)</btitle><stitle>BioCAS</stitle><date>2013-10</date><risdate>2013</risdate><spage>5</spage><epage>8</epage><pages>5-8</pages><issn>2163-4025</issn><eissn>2766-4465</eissn><eisbn>9781479914715</eisbn><eisbn>1479914711</eisbn><abstract>This paper describes an analog probabilistic spiking neural network (PSNN) circuit for portable and implanted applications which especially require low power, small area and on-chip learning to ensure good mobility, body safety and continually accurate classification. The circuit is implemented using TSMC 0.18μm CMOS technology. Simulation results show that the circuit can learn linearly non-separable exclusive-or (xor) problem under 1V supply with only 3.8μW of power consumption. Long-term, multi-stage synaptic memory contains more information for a longer time in a single synapse. Comparison of the proposed PSNN with recent hardware neural networks is also provided.</abstract><pub>IEEE</pub><doi>10.1109/BioCAS.2013.6679626</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2163-4025
ispartof 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2013, p.5-8
issn 2163-4025
2766-4465
language eng
recordid cdi_ieee_primary_6679626
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Biological neural networks
Neurons
Power demand
Probabilistic logic
Training
Very large scale integration
title An on-chip learning, low-power probabilistic spiking neural network with long-term memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20on-chip%20learning,%20low-power%20probabilistic%20spiking%20neural%20network%20with%20long-term%20memory&rft.btitle=2013%20IEEE%20Biomedical%20Circuits%20and%20Systems%20Conference%20(BioCAS)&rft.au=Hung-Yi%20Hsieh&rft.date=2013-10&rft.spage=5&rft.epage=8&rft.pages=5-8&rft.issn=2163-4025&rft.eissn=2766-4465&rft_id=info:doi/10.1109/BioCAS.2013.6679626&rft_dat=%3Cieee_6IE%3E6679626%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479914715&rft.eisbn_list=1479914711&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6679626&rfr_iscdi=true