Optimization of power delivery network design for multiple supply voltages

Great power demands and low-power techniques have increased the requirements on the power delivery network, especially with multiple supply voltages. In this paper, methods for optimizing decoupling capacitor allocation and placement for multiple power nets are presented. Based on a physics-based ci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Siming Pan, Achkir, Brice
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue
container_start_page 333
container_title
container_volume
creator Siming Pan
Achkir, Brice
description Great power demands and low-power techniques have increased the requirements on the power delivery network, especially with multiple supply voltages. In this paper, methods for optimizing decoupling capacitor allocation and placement for multiple power nets are presented. Based on a physics-based circuit model extraction for the PCB-PDN structures, a two-level optimization procedure is proposed. First, stackup and potential locations and patterns for power and ground vias are optimized based on design guidelines. In the second step, distribution and allocation of decoupling capacitors are optimized targeting for the system-level PDN performance among multiple supply voltages by an integer linear programming (ILP) algorithm. The physical properties of the decoupling capacitors are described as circuit elements in the equivalent circuit model. Thus, instead of full-wave analysis, only efficient circuit simulations are needed in the optimization process. The proposed optimization methods are applied in a complex system including integrated circuit with multiple supply voltages. Compared to the original unoptimized design, the optimized PDN impedance for the worst designed power nets improved 400% with the same cost of decoupling.
doi_str_mv 10.1109/ISEMC.2013.6670433
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6670433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6670433</ieee_id><sourcerecordid>6670433</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b30bd661c5f025ada8dea3b8ed7df0dc2267434ed3080de24eca8aa89099ca863</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhcc_sNS8gG7mBRLvnUkmM0sptVYqXajgrkwyN2U0aUKStsSnN2ARV-dwPvgWh7FbhAgRzP3ydf4yiwSgjJRKIZbyjAUm1RinxkCMkJyzicBEh4ioL_4z0OLyj8HHNQu67hMARq0yEifsed30vvLftvf1jtcFb-ojtdxR6Q_UDnxH_bFuv8ah89sdL-qWV_uy901JvNs3TTnwQ132dkvdDbsqbNlRcMope3-cv82ewtV6sZw9rEKPadKHmYTMKYV5UoBIrLPakZWZJpe6AlwuhEpjGZOToMGRiCm32lptwJixKTlld79eT0SbpvWVbYfN6Rn5A9O8VMs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimization of power delivery network design for multiple supply voltages</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Siming Pan ; Achkir, Brice</creator><creatorcontrib>Siming Pan ; Achkir, Brice</creatorcontrib><description>Great power demands and low-power techniques have increased the requirements on the power delivery network, especially with multiple supply voltages. In this paper, methods for optimizing decoupling capacitor allocation and placement for multiple power nets are presented. Based on a physics-based circuit model extraction for the PCB-PDN structures, a two-level optimization procedure is proposed. First, stackup and potential locations and patterns for power and ground vias are optimized based on design guidelines. In the second step, distribution and allocation of decoupling capacitors are optimized targeting for the system-level PDN performance among multiple supply voltages by an integer linear programming (ILP) algorithm. The physical properties of the decoupling capacitors are described as circuit elements in the equivalent circuit model. Thus, instead of full-wave analysis, only efficient circuit simulations are needed in the optimization process. The proposed optimization methods are applied in a complex system including integrated circuit with multiple supply voltages. Compared to the original unoptimized design, the optimized PDN impedance for the worst designed power nets improved 400% with the same cost of decoupling.</description><identifier>ISSN: 2158-110X</identifier><identifier>ISBN: 9781479904082</identifier><identifier>ISBN: 1479904082</identifier><identifier>EISSN: 2158-1118</identifier><identifier>EISBN: 9781479904105</identifier><identifier>EISBN: 9781479904099</identifier><identifier>EISBN: 1479904090</identifier><identifier>EISBN: 1479904104</identifier><identifier>DOI: 10.1109/ISEMC.2013.6670433</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitors ; Decoupling Capacitor Optimization ; Impedance ; Integrated circuit modeling ; Mathematical model ; Noise ; Optimization ; Power Integrity ; Simultaneous Switching Noise ; Target Impedance</subject><ispartof>2013 IEEE International Symposium on Electromagnetic Compatibility, 2013, p.333-337</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6670433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6670433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Siming Pan</creatorcontrib><creatorcontrib>Achkir, Brice</creatorcontrib><title>Optimization of power delivery network design for multiple supply voltages</title><title>2013 IEEE International Symposium on Electromagnetic Compatibility</title><addtitle>ISEMC</addtitle><description>Great power demands and low-power techniques have increased the requirements on the power delivery network, especially with multiple supply voltages. In this paper, methods for optimizing decoupling capacitor allocation and placement for multiple power nets are presented. Based on a physics-based circuit model extraction for the PCB-PDN structures, a two-level optimization procedure is proposed. First, stackup and potential locations and patterns for power and ground vias are optimized based on design guidelines. In the second step, distribution and allocation of decoupling capacitors are optimized targeting for the system-level PDN performance among multiple supply voltages by an integer linear programming (ILP) algorithm. The physical properties of the decoupling capacitors are described as circuit elements in the equivalent circuit model. Thus, instead of full-wave analysis, only efficient circuit simulations are needed in the optimization process. The proposed optimization methods are applied in a complex system including integrated circuit with multiple supply voltages. Compared to the original unoptimized design, the optimized PDN impedance for the worst designed power nets improved 400% with the same cost of decoupling.</description><subject>Capacitors</subject><subject>Decoupling Capacitor Optimization</subject><subject>Impedance</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>Optimization</subject><subject>Power Integrity</subject><subject>Simultaneous Switching Noise</subject><subject>Target Impedance</subject><issn>2158-110X</issn><issn>2158-1118</issn><isbn>9781479904082</isbn><isbn>1479904082</isbn><isbn>9781479904105</isbn><isbn>9781479904099</isbn><isbn>1479904090</isbn><isbn>1479904104</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhcc_sNS8gG7mBRLvnUkmM0sptVYqXajgrkwyN2U0aUKStsSnN2ARV-dwPvgWh7FbhAgRzP3ydf4yiwSgjJRKIZbyjAUm1RinxkCMkJyzicBEh4ioL_4z0OLyj8HHNQu67hMARq0yEifsed30vvLftvf1jtcFb-ojtdxR6Q_UDnxH_bFuv8ah89sdL-qWV_uy901JvNs3TTnwQ132dkvdDbsqbNlRcMope3-cv82ewtV6sZw9rEKPadKHmYTMKYV5UoBIrLPakZWZJpe6AlwuhEpjGZOToMGRiCm32lptwJixKTlld79eT0SbpvWVbYfN6Rn5A9O8VMs</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Siming Pan</creator><creator>Achkir, Brice</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201308</creationdate><title>Optimization of power delivery network design for multiple supply voltages</title><author>Siming Pan ; Achkir, Brice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b30bd661c5f025ada8dea3b8ed7df0dc2267434ed3080de24eca8aa89099ca863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Capacitors</topic><topic>Decoupling Capacitor Optimization</topic><topic>Impedance</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>Optimization</topic><topic>Power Integrity</topic><topic>Simultaneous Switching Noise</topic><topic>Target Impedance</topic><toplevel>online_resources</toplevel><creatorcontrib>Siming Pan</creatorcontrib><creatorcontrib>Achkir, Brice</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siming Pan</au><au>Achkir, Brice</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimization of power delivery network design for multiple supply voltages</atitle><btitle>2013 IEEE International Symposium on Electromagnetic Compatibility</btitle><stitle>ISEMC</stitle><date>2013-08</date><risdate>2013</risdate><spage>333</spage><epage>337</epage><pages>333-337</pages><issn>2158-110X</issn><eissn>2158-1118</eissn><isbn>9781479904082</isbn><isbn>1479904082</isbn><eisbn>9781479904105</eisbn><eisbn>9781479904099</eisbn><eisbn>1479904090</eisbn><eisbn>1479904104</eisbn><abstract>Great power demands and low-power techniques have increased the requirements on the power delivery network, especially with multiple supply voltages. In this paper, methods for optimizing decoupling capacitor allocation and placement for multiple power nets are presented. Based on a physics-based circuit model extraction for the PCB-PDN structures, a two-level optimization procedure is proposed. First, stackup and potential locations and patterns for power and ground vias are optimized based on design guidelines. In the second step, distribution and allocation of decoupling capacitors are optimized targeting for the system-level PDN performance among multiple supply voltages by an integer linear programming (ILP) algorithm. The physical properties of the decoupling capacitors are described as circuit elements in the equivalent circuit model. Thus, instead of full-wave analysis, only efficient circuit simulations are needed in the optimization process. The proposed optimization methods are applied in a complex system including integrated circuit with multiple supply voltages. Compared to the original unoptimized design, the optimized PDN impedance for the worst designed power nets improved 400% with the same cost of decoupling.</abstract><pub>IEEE</pub><doi>10.1109/ISEMC.2013.6670433</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-110X
ispartof 2013 IEEE International Symposium on Electromagnetic Compatibility, 2013, p.333-337
issn 2158-110X
2158-1118
language eng
recordid cdi_ieee_primary_6670433
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Capacitors
Decoupling Capacitor Optimization
Impedance
Integrated circuit modeling
Mathematical model
Noise
Optimization
Power Integrity
Simultaneous Switching Noise
Target Impedance
title Optimization of power delivery network design for multiple supply voltages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimization%20of%20power%20delivery%20network%20design%20for%20multiple%20supply%20voltages&rft.btitle=2013%20IEEE%20International%20Symposium%20on%20Electromagnetic%20Compatibility&rft.au=Siming%20Pan&rft.date=2013-08&rft.spage=333&rft.epage=337&rft.pages=333-337&rft.issn=2158-110X&rft.eissn=2158-1118&rft.isbn=9781479904082&rft.isbn_list=1479904082&rft_id=info:doi/10.1109/ISEMC.2013.6670433&rft_dat=%3Cieee_6IE%3E6670433%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479904105&rft.eisbn_list=9781479904099&rft.eisbn_list=1479904090&rft.eisbn_list=1479904104&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6670433&rfr_iscdi=true