Optimization of power delivery network design for multiple supply voltages
Great power demands and low-power techniques have increased the requirements on the power delivery network, especially with multiple supply voltages. In this paper, methods for optimizing decoupling capacitor allocation and placement for multiple power nets are presented. Based on a physics-based ci...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 337 |
---|---|
container_issue | |
container_start_page | 333 |
container_title | |
container_volume | |
creator | Siming Pan Achkir, Brice |
description | Great power demands and low-power techniques have increased the requirements on the power delivery network, especially with multiple supply voltages. In this paper, methods for optimizing decoupling capacitor allocation and placement for multiple power nets are presented. Based on a physics-based circuit model extraction for the PCB-PDN structures, a two-level optimization procedure is proposed. First, stackup and potential locations and patterns for power and ground vias are optimized based on design guidelines. In the second step, distribution and allocation of decoupling capacitors are optimized targeting for the system-level PDN performance among multiple supply voltages by an integer linear programming (ILP) algorithm. The physical properties of the decoupling capacitors are described as circuit elements in the equivalent circuit model. Thus, instead of full-wave analysis, only efficient circuit simulations are needed in the optimization process. The proposed optimization methods are applied in a complex system including integrated circuit with multiple supply voltages. Compared to the original unoptimized design, the optimized PDN impedance for the worst designed power nets improved 400% with the same cost of decoupling. |
doi_str_mv | 10.1109/ISEMC.2013.6670433 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6670433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6670433</ieee_id><sourcerecordid>6670433</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b30bd661c5f025ada8dea3b8ed7df0dc2267434ed3080de24eca8aa89099ca863</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhcc_sNS8gG7mBRLvnUkmM0sptVYqXajgrkwyN2U0aUKStsSnN2ARV-dwPvgWh7FbhAgRzP3ydf4yiwSgjJRKIZbyjAUm1RinxkCMkJyzicBEh4ioL_4z0OLyj8HHNQu67hMARq0yEifsed30vvLftvf1jtcFb-ojtdxR6Q_UDnxH_bFuv8ah89sdL-qWV_uy901JvNs3TTnwQ132dkvdDbsqbNlRcMope3-cv82ewtV6sZw9rEKPadKHmYTMKYV5UoBIrLPakZWZJpe6AlwuhEpjGZOToMGRiCm32lptwJixKTlld79eT0SbpvWVbYfN6Rn5A9O8VMs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimization of power delivery network design for multiple supply voltages</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Siming Pan ; Achkir, Brice</creator><creatorcontrib>Siming Pan ; Achkir, Brice</creatorcontrib><description>Great power demands and low-power techniques have increased the requirements on the power delivery network, especially with multiple supply voltages. In this paper, methods for optimizing decoupling capacitor allocation and placement for multiple power nets are presented. Based on a physics-based circuit model extraction for the PCB-PDN structures, a two-level optimization procedure is proposed. First, stackup and potential locations and patterns for power and ground vias are optimized based on design guidelines. In the second step, distribution and allocation of decoupling capacitors are optimized targeting for the system-level PDN performance among multiple supply voltages by an integer linear programming (ILP) algorithm. The physical properties of the decoupling capacitors are described as circuit elements in the equivalent circuit model. Thus, instead of full-wave analysis, only efficient circuit simulations are needed in the optimization process. The proposed optimization methods are applied in a complex system including integrated circuit with multiple supply voltages. Compared to the original unoptimized design, the optimized PDN impedance for the worst designed power nets improved 400% with the same cost of decoupling.</description><identifier>ISSN: 2158-110X</identifier><identifier>ISBN: 9781479904082</identifier><identifier>ISBN: 1479904082</identifier><identifier>EISSN: 2158-1118</identifier><identifier>EISBN: 9781479904105</identifier><identifier>EISBN: 9781479904099</identifier><identifier>EISBN: 1479904090</identifier><identifier>EISBN: 1479904104</identifier><identifier>DOI: 10.1109/ISEMC.2013.6670433</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitors ; Decoupling Capacitor Optimization ; Impedance ; Integrated circuit modeling ; Mathematical model ; Noise ; Optimization ; Power Integrity ; Simultaneous Switching Noise ; Target Impedance</subject><ispartof>2013 IEEE International Symposium on Electromagnetic Compatibility, 2013, p.333-337</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6670433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6670433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Siming Pan</creatorcontrib><creatorcontrib>Achkir, Brice</creatorcontrib><title>Optimization of power delivery network design for multiple supply voltages</title><title>2013 IEEE International Symposium on Electromagnetic Compatibility</title><addtitle>ISEMC</addtitle><description>Great power demands and low-power techniques have increased the requirements on the power delivery network, especially with multiple supply voltages. In this paper, methods for optimizing decoupling capacitor allocation and placement for multiple power nets are presented. Based on a physics-based circuit model extraction for the PCB-PDN structures, a two-level optimization procedure is proposed. First, stackup and potential locations and patterns for power and ground vias are optimized based on design guidelines. In the second step, distribution and allocation of decoupling capacitors are optimized targeting for the system-level PDN performance among multiple supply voltages by an integer linear programming (ILP) algorithm. The physical properties of the decoupling capacitors are described as circuit elements in the equivalent circuit model. Thus, instead of full-wave analysis, only efficient circuit simulations are needed in the optimization process. The proposed optimization methods are applied in a complex system including integrated circuit with multiple supply voltages. Compared to the original unoptimized design, the optimized PDN impedance for the worst designed power nets improved 400% with the same cost of decoupling.</description><subject>Capacitors</subject><subject>Decoupling Capacitor Optimization</subject><subject>Impedance</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>Optimization</subject><subject>Power Integrity</subject><subject>Simultaneous Switching Noise</subject><subject>Target Impedance</subject><issn>2158-110X</issn><issn>2158-1118</issn><isbn>9781479904082</isbn><isbn>1479904082</isbn><isbn>9781479904105</isbn><isbn>9781479904099</isbn><isbn>1479904090</isbn><isbn>1479904104</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhcc_sNS8gG7mBRLvnUkmM0sptVYqXajgrkwyN2U0aUKStsSnN2ARV-dwPvgWh7FbhAgRzP3ydf4yiwSgjJRKIZbyjAUm1RinxkCMkJyzicBEh4ioL_4z0OLyj8HHNQu67hMARq0yEifsed30vvLftvf1jtcFb-ojtdxR6Q_UDnxH_bFuv8ah89sdL-qWV_uy901JvNs3TTnwQ132dkvdDbsqbNlRcMope3-cv82ewtV6sZw9rEKPadKHmYTMKYV5UoBIrLPakZWZJpe6AlwuhEpjGZOToMGRiCm32lptwJixKTlld79eT0SbpvWVbYfN6Rn5A9O8VMs</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Siming Pan</creator><creator>Achkir, Brice</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201308</creationdate><title>Optimization of power delivery network design for multiple supply voltages</title><author>Siming Pan ; Achkir, Brice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b30bd661c5f025ada8dea3b8ed7df0dc2267434ed3080de24eca8aa89099ca863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Capacitors</topic><topic>Decoupling Capacitor Optimization</topic><topic>Impedance</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>Optimization</topic><topic>Power Integrity</topic><topic>Simultaneous Switching Noise</topic><topic>Target Impedance</topic><toplevel>online_resources</toplevel><creatorcontrib>Siming Pan</creatorcontrib><creatorcontrib>Achkir, Brice</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siming Pan</au><au>Achkir, Brice</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimization of power delivery network design for multiple supply voltages</atitle><btitle>2013 IEEE International Symposium on Electromagnetic Compatibility</btitle><stitle>ISEMC</stitle><date>2013-08</date><risdate>2013</risdate><spage>333</spage><epage>337</epage><pages>333-337</pages><issn>2158-110X</issn><eissn>2158-1118</eissn><isbn>9781479904082</isbn><isbn>1479904082</isbn><eisbn>9781479904105</eisbn><eisbn>9781479904099</eisbn><eisbn>1479904090</eisbn><eisbn>1479904104</eisbn><abstract>Great power demands and low-power techniques have increased the requirements on the power delivery network, especially with multiple supply voltages. In this paper, methods for optimizing decoupling capacitor allocation and placement for multiple power nets are presented. Based on a physics-based circuit model extraction for the PCB-PDN structures, a two-level optimization procedure is proposed. First, stackup and potential locations and patterns for power and ground vias are optimized based on design guidelines. In the second step, distribution and allocation of decoupling capacitors are optimized targeting for the system-level PDN performance among multiple supply voltages by an integer linear programming (ILP) algorithm. The physical properties of the decoupling capacitors are described as circuit elements in the equivalent circuit model. Thus, instead of full-wave analysis, only efficient circuit simulations are needed in the optimization process. The proposed optimization methods are applied in a complex system including integrated circuit with multiple supply voltages. Compared to the original unoptimized design, the optimized PDN impedance for the worst designed power nets improved 400% with the same cost of decoupling.</abstract><pub>IEEE</pub><doi>10.1109/ISEMC.2013.6670433</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2158-110X |
ispartof | 2013 IEEE International Symposium on Electromagnetic Compatibility, 2013, p.333-337 |
issn | 2158-110X 2158-1118 |
language | eng |
recordid | cdi_ieee_primary_6670433 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Capacitors Decoupling Capacitor Optimization Impedance Integrated circuit modeling Mathematical model Noise Optimization Power Integrity Simultaneous Switching Noise Target Impedance |
title | Optimization of power delivery network design for multiple supply voltages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimization%20of%20power%20delivery%20network%20design%20for%20multiple%20supply%20voltages&rft.btitle=2013%20IEEE%20International%20Symposium%20on%20Electromagnetic%20Compatibility&rft.au=Siming%20Pan&rft.date=2013-08&rft.spage=333&rft.epage=337&rft.pages=333-337&rft.issn=2158-110X&rft.eissn=2158-1118&rft.isbn=9781479904082&rft.isbn_list=1479904082&rft_id=info:doi/10.1109/ISEMC.2013.6670433&rft_dat=%3Cieee_6IE%3E6670433%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479904105&rft.eisbn_list=9781479904099&rft.eisbn_list=1479904090&rft.eisbn_list=1479904104&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6670433&rfr_iscdi=true |