Performance monitoring for model predictive control maintenance

An economically motivated performance measure is proposed for use with model predictive control applications. The typical case handled is that you have a trade-off situation between two conflicting goals: (i) the need to be close to a constraint, since this will give good production economy, and (ii...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moden, Per Erik, Lundh, Michael
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3775
container_issue
container_start_page 3770
container_title
container_volume
creator Moden, Per Erik
Lundh, Michael
description An economically motivated performance measure is proposed for use with model predictive control applications. The typical case handled is that you have a trade-off situation between two conflicting goals: (i) the need to be close to a constraint, since this will give good production economy, and (ii) the need to avoid constraint violation, since that would mean producing an inferior quality, exceeding environmental constraints (thereby requiring a fee), or having some other costly drawback. The proposed performance measure uses consumption and production rates in the process and the corresponding cost and benefit factors, combined with the risks of constraint violations and their associated costs. There is a discussion on the hard task of choosing threshold values, and the approach is illustrated by applying it to a couple of examples. One of the examples is the Autoprofit benchmark pulp digester model.
doi_str_mv 10.23919/ECC.2013.6669289
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6669289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6669289</ieee_id><sourcerecordid>6669289</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-f7b5a265b2de5f789bf1d653fd6bd24961bab3af135b3e72c681499c473886e03</originalsourceid><addsrcrecordid>eNotj0FLxDAUhONBUNb-APHSP9Ca5DUvyUmkrLqwoAc9L0nzIpE2XbJF8N9bcWFgmA9mYBi7FbyVYIW93_Z9K7mAFhGtNPaCVVYb4LDKorRXrDqdvjjnQmuBSl2zhzcqcS6TywPV05zTMpeUP-uVrTHQWB8LhTQs6ZvqYc5Lmcd6cikvlP86N-wyuvFE1dk37ONp-96_NPvX513_uG-S7MTSRO2Vk6i8DKSiNtZHEVBBDOiD7CwK7zy4KEB5IC0HNKKzdug0GIPEYcPu_ncTER2OJU2u_BzON-EXwfVIww</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance monitoring for model predictive control maintenance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Moden, Per Erik ; Lundh, Michael</creator><creatorcontrib>Moden, Per Erik ; Lundh, Michael</creatorcontrib><description>An economically motivated performance measure is proposed for use with model predictive control applications. The typical case handled is that you have a trade-off situation between two conflicting goals: (i) the need to be close to a constraint, since this will give good production economy, and (ii) the need to avoid constraint violation, since that would mean producing an inferior quality, exceeding environmental constraints (thereby requiring a fee), or having some other costly drawback. The proposed performance measure uses consumption and production rates in the process and the corresponding cost and benefit factors, combined with the risks of constraint violations and their associated costs. There is a discussion on the hard task of choosing threshold values, and the approach is illustrated by applying it to a couple of examples. One of the examples is the Autoprofit benchmark pulp digester model.</description><identifier>EISBN: 9783033039629</identifier><identifier>EISBN: 3033039626</identifier><identifier>DOI: 10.23919/ECC.2013.6669289</identifier><language>eng</language><publisher>EUCA</publisher><subject>Accuracy ; Economics ; Loss measurement ; Monitoring ; Production ; Vectors</subject><ispartof>2013 European Control Conference (ECC), 2013, p.3770-3775</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6669289$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6669289$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moden, Per Erik</creatorcontrib><creatorcontrib>Lundh, Michael</creatorcontrib><title>Performance monitoring for model predictive control maintenance</title><title>2013 European Control Conference (ECC)</title><addtitle>ECC</addtitle><description>An economically motivated performance measure is proposed for use with model predictive control applications. The typical case handled is that you have a trade-off situation between two conflicting goals: (i) the need to be close to a constraint, since this will give good production economy, and (ii) the need to avoid constraint violation, since that would mean producing an inferior quality, exceeding environmental constraints (thereby requiring a fee), or having some other costly drawback. The proposed performance measure uses consumption and production rates in the process and the corresponding cost and benefit factors, combined with the risks of constraint violations and their associated costs. There is a discussion on the hard task of choosing threshold values, and the approach is illustrated by applying it to a couple of examples. One of the examples is the Autoprofit benchmark pulp digester model.</description><subject>Accuracy</subject><subject>Economics</subject><subject>Loss measurement</subject><subject>Monitoring</subject><subject>Production</subject><subject>Vectors</subject><isbn>9783033039629</isbn><isbn>3033039626</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLxDAUhONBUNb-APHSP9Ca5DUvyUmkrLqwoAc9L0nzIpE2XbJF8N9bcWFgmA9mYBi7FbyVYIW93_Z9K7mAFhGtNPaCVVYb4LDKorRXrDqdvjjnQmuBSl2zhzcqcS6TywPV05zTMpeUP-uVrTHQWB8LhTQs6ZvqYc5Lmcd6cikvlP86N-wyuvFE1dk37ONp-96_NPvX513_uG-S7MTSRO2Vk6i8DKSiNtZHEVBBDOiD7CwK7zy4KEB5IC0HNKKzdug0GIPEYcPu_ncTER2OJU2u_BzON-EXwfVIww</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Moden, Per Erik</creator><creator>Lundh, Michael</creator><general>EUCA</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201307</creationdate><title>Performance monitoring for model predictive control maintenance</title><author>Moden, Per Erik ; Lundh, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-f7b5a265b2de5f789bf1d653fd6bd24961bab3af135b3e72c681499c473886e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Economics</topic><topic>Loss measurement</topic><topic>Monitoring</topic><topic>Production</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Moden, Per Erik</creatorcontrib><creatorcontrib>Lundh, Michael</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moden, Per Erik</au><au>Lundh, Michael</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance monitoring for model predictive control maintenance</atitle><btitle>2013 European Control Conference (ECC)</btitle><stitle>ECC</stitle><date>2013-07</date><risdate>2013</risdate><spage>3770</spage><epage>3775</epage><pages>3770-3775</pages><eisbn>9783033039629</eisbn><eisbn>3033039626</eisbn><abstract>An economically motivated performance measure is proposed for use with model predictive control applications. The typical case handled is that you have a trade-off situation between two conflicting goals: (i) the need to be close to a constraint, since this will give good production economy, and (ii) the need to avoid constraint violation, since that would mean producing an inferior quality, exceeding environmental constraints (thereby requiring a fee), or having some other costly drawback. The proposed performance measure uses consumption and production rates in the process and the corresponding cost and benefit factors, combined with the risks of constraint violations and their associated costs. There is a discussion on the hard task of choosing threshold values, and the approach is illustrated by applying it to a couple of examples. One of the examples is the Autoprofit benchmark pulp digester model.</abstract><pub>EUCA</pub><doi>10.23919/ECC.2013.6669289</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 9783033039629
ispartof 2013 European Control Conference (ECC), 2013, p.3770-3775
issn
language eng
recordid cdi_ieee_primary_6669289
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Economics
Loss measurement
Monitoring
Production
Vectors
title Performance monitoring for model predictive control maintenance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20monitoring%20for%20model%20predictive%20control%20maintenance&rft.btitle=2013%20European%20Control%20Conference%20(ECC)&rft.au=Moden,%20Per%20Erik&rft.date=2013-07&rft.spage=3770&rft.epage=3775&rft.pages=3770-3775&rft_id=info:doi/10.23919/ECC.2013.6669289&rft_dat=%3Cieee_6IE%3E6669289%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783033039629&rft.eisbn_list=3033039626&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6669289&rfr_iscdi=true