Detection of intention level in response to task difficulty from EEG signals
We present an approach that enables detecting intention levels of subjects in response to task difficulty utilizing an electroencephalogram (EEG) based brain-computer interface (BCI). In particular, we use linear discriminant analysis (LDA) to classify event-related synchronization (ERS) and desynch...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Koyas, Eia Hocaoglu, Elif Patoglu, Volkan Cetin, Mujdat |
description | We present an approach that enables detecting intention levels of subjects in response to task difficulty utilizing an electroencephalogram (EEG) based brain-computer interface (BCI). In particular, we use linear discriminant analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with right elbow flexion and extension movements, while lifting different weights. We observe that it is possible to classify tasks of varying difficulty based on EEG signals. Additionally, we also present a correlation analysis between intention levels detected from EEG and surface electromyogram (sEMG) signals. Our experimental results suggest that it is possible to extract the intention level information from EEG signals in response to task difficulty and indicate some level of correlation between EEG and EMG. With a view towards detecting patients' intention levels during rehabilitation therapies, the proposed approach has the potential to ensure active involvement of patients throughout exercise routines and increase the efficacy of robot assisted therapies. |
doi_str_mv | 10.1109/MLSP.2013.6661905 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6661905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6661905</ieee_id><sourcerecordid>6661905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-a51d2344d592e3e8d5973c3fa60053cc3a3defe55cf8de63d7c065069c0690f03</originalsourceid><addsrcrecordid>eNot0NFKwzAUxvEoCo65BxBv8gKd5-Q0SXMpc06hoqCCd6OkJxLt2tFEwbe36K5-_G--i0-IC4QlIrirh_r5aakAaWmMQQf6SCycrbC0ziFWYI7FTJGtCqeqtxMxQ62xULrEM7FI6QMA0FpdkpmJ-oYz-xyHXg5Bxj5z_xcdf3M3tRw57Yc-scyDzE36lG0MIfqvLv_IMA47uV5vZIrvfdOlc3EaJnhxcC5eb9cvq7uiftzcr67rwitFuWg0torKstVOMXE1aclTaAyAJu-poZYDa-1D1bKh1nowGoybcBCA5uLyfzcy83Y_xl0z_mwPX9AvEjxQeg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of intention level in response to task difficulty from EEG signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Koyas, Eia ; Hocaoglu, Elif ; Patoglu, Volkan ; Cetin, Mujdat</creator><creatorcontrib>Koyas, Eia ; Hocaoglu, Elif ; Patoglu, Volkan ; Cetin, Mujdat</creatorcontrib><description>We present an approach that enables detecting intention levels of subjects in response to task difficulty utilizing an electroencephalogram (EEG) based brain-computer interface (BCI). In particular, we use linear discriminant analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with right elbow flexion and extension movements, while lifting different weights. We observe that it is possible to classify tasks of varying difficulty based on EEG signals. Additionally, we also present a correlation analysis between intention levels detected from EEG and surface electromyogram (sEMG) signals. Our experimental results suggest that it is possible to extract the intention level information from EEG signals in response to task difficulty and indicate some level of correlation between EEG and EMG. With a view towards detecting patients' intention levels during rehabilitation therapies, the proposed approach has the potential to ensure active involvement of patients throughout exercise routines and increase the efficacy of robot assisted therapies.</description><identifier>ISSN: 1551-2541</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781479911806</identifier><identifier>EISBN: 1479911801</identifier><identifier>DOI: 10.1109/MLSP.2013.6661905</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; BCI ; Correlation ; EEG ; Elbow ; Electroencephalography ; Electromyography ; Feature extraction ; intention level ; LDA ; robotic rehabilitation ; Robots ; sEMG</subject><ispartof>2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2013, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-a51d2344d592e3e8d5973c3fa60053cc3a3defe55cf8de63d7c065069c0690f03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6661905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6661905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koyas, Eia</creatorcontrib><creatorcontrib>Hocaoglu, Elif</creatorcontrib><creatorcontrib>Patoglu, Volkan</creatorcontrib><creatorcontrib>Cetin, Mujdat</creatorcontrib><title>Detection of intention level in response to task difficulty from EEG signals</title><title>2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)</title><addtitle>MLSP</addtitle><description>We present an approach that enables detecting intention levels of subjects in response to task difficulty utilizing an electroencephalogram (EEG) based brain-computer interface (BCI). In particular, we use linear discriminant analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with right elbow flexion and extension movements, while lifting different weights. We observe that it is possible to classify tasks of varying difficulty based on EEG signals. Additionally, we also present a correlation analysis between intention levels detected from EEG and surface electromyogram (sEMG) signals. Our experimental results suggest that it is possible to extract the intention level information from EEG signals in response to task difficulty and indicate some level of correlation between EEG and EMG. With a view towards detecting patients' intention levels during rehabilitation therapies, the proposed approach has the potential to ensure active involvement of patients throughout exercise routines and increase the efficacy of robot assisted therapies.</description><subject>Accuracy</subject><subject>BCI</subject><subject>Correlation</subject><subject>EEG</subject><subject>Elbow</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Feature extraction</subject><subject>intention level</subject><subject>LDA</subject><subject>robotic rehabilitation</subject><subject>Robots</subject><subject>sEMG</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>9781479911806</isbn><isbn>1479911801</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNot0NFKwzAUxvEoCo65BxBv8gKd5-Q0SXMpc06hoqCCd6OkJxLt2tFEwbe36K5-_G--i0-IC4QlIrirh_r5aakAaWmMQQf6SCycrbC0ziFWYI7FTJGtCqeqtxMxQ62xULrEM7FI6QMA0FpdkpmJ-oYz-xyHXg5Bxj5z_xcdf3M3tRw57Yc-scyDzE36lG0MIfqvLv_IMA47uV5vZIrvfdOlc3EaJnhxcC5eb9cvq7uiftzcr67rwitFuWg0torKstVOMXE1aclTaAyAJu-poZYDa-1D1bKh1nowGoybcBCA5uLyfzcy83Y_xl0z_mwPX9AvEjxQeg</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Koyas, Eia</creator><creator>Hocaoglu, Elif</creator><creator>Patoglu, Volkan</creator><creator>Cetin, Mujdat</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201309</creationdate><title>Detection of intention level in response to task difficulty from EEG signals</title><author>Koyas, Eia ; Hocaoglu, Elif ; Patoglu, Volkan ; Cetin, Mujdat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-a51d2344d592e3e8d5973c3fa60053cc3a3defe55cf8de63d7c065069c0690f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>BCI</topic><topic>Correlation</topic><topic>EEG</topic><topic>Elbow</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Feature extraction</topic><topic>intention level</topic><topic>LDA</topic><topic>robotic rehabilitation</topic><topic>Robots</topic><topic>sEMG</topic><toplevel>online_resources</toplevel><creatorcontrib>Koyas, Eia</creatorcontrib><creatorcontrib>Hocaoglu, Elif</creatorcontrib><creatorcontrib>Patoglu, Volkan</creatorcontrib><creatorcontrib>Cetin, Mujdat</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koyas, Eia</au><au>Hocaoglu, Elif</au><au>Patoglu, Volkan</au><au>Cetin, Mujdat</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of intention level in response to task difficulty from EEG signals</atitle><btitle>2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)</btitle><stitle>MLSP</stitle><date>2013-09</date><risdate>2013</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><eisbn>9781479911806</eisbn><eisbn>1479911801</eisbn><abstract>We present an approach that enables detecting intention levels of subjects in response to task difficulty utilizing an electroencephalogram (EEG) based brain-computer interface (BCI). In particular, we use linear discriminant analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with right elbow flexion and extension movements, while lifting different weights. We observe that it is possible to classify tasks of varying difficulty based on EEG signals. Additionally, we also present a correlation analysis between intention levels detected from EEG and surface electromyogram (sEMG) signals. Our experimental results suggest that it is possible to extract the intention level information from EEG signals in response to task difficulty and indicate some level of correlation between EEG and EMG. With a view towards detecting patients' intention levels during rehabilitation therapies, the proposed approach has the potential to ensure active involvement of patients throughout exercise routines and increase the efficacy of robot assisted therapies.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2013.6661905</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-2541 |
ispartof | 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2013, p.1-6 |
issn | 1551-2541 2378-928X |
language | eng |
recordid | cdi_ieee_primary_6661905 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy BCI Correlation EEG Elbow Electroencephalography Electromyography Feature extraction intention level LDA robotic rehabilitation Robots sEMG |
title | Detection of intention level in response to task difficulty from EEG signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20intention%20level%20in%20response%20to%20task%20difficulty%20from%20EEG%20signals&rft.btitle=2013%20IEEE%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing%20(MLSP)&rft.au=Koyas,%20Eia&rft.date=2013-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft_id=info:doi/10.1109/MLSP.2013.6661905&rft_dat=%3Cieee_6IE%3E6661905%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479911806&rft.eisbn_list=1479911801&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6661905&rfr_iscdi=true |