Detection of intention level in response to task difficulty from EEG signals

We present an approach that enables detecting intention levels of subjects in response to task difficulty utilizing an electroencephalogram (EEG) based brain-computer interface (BCI). In particular, we use linear discriminant analysis (LDA) to classify event-related synchronization (ERS) and desynch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Koyas, Eia, Hocaoglu, Elif, Patoglu, Volkan, Cetin, Mujdat
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Koyas, Eia
Hocaoglu, Elif
Patoglu, Volkan
Cetin, Mujdat
description We present an approach that enables detecting intention levels of subjects in response to task difficulty utilizing an electroencephalogram (EEG) based brain-computer interface (BCI). In particular, we use linear discriminant analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with right elbow flexion and extension movements, while lifting different weights. We observe that it is possible to classify tasks of varying difficulty based on EEG signals. Additionally, we also present a correlation analysis between intention levels detected from EEG and surface electromyogram (sEMG) signals. Our experimental results suggest that it is possible to extract the intention level information from EEG signals in response to task difficulty and indicate some level of correlation between EEG and EMG. With a view towards detecting patients' intention levels during rehabilitation therapies, the proposed approach has the potential to ensure active involvement of patients throughout exercise routines and increase the efficacy of robot assisted therapies.
doi_str_mv 10.1109/MLSP.2013.6661905
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6661905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6661905</ieee_id><sourcerecordid>6661905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-a51d2344d592e3e8d5973c3fa60053cc3a3defe55cf8de63d7c065069c0690f03</originalsourceid><addsrcrecordid>eNot0NFKwzAUxvEoCo65BxBv8gKd5-Q0SXMpc06hoqCCd6OkJxLt2tFEwbe36K5-_G--i0-IC4QlIrirh_r5aakAaWmMQQf6SCycrbC0ziFWYI7FTJGtCqeqtxMxQ62xULrEM7FI6QMA0FpdkpmJ-oYz-xyHXg5Bxj5z_xcdf3M3tRw57Yc-scyDzE36lG0MIfqvLv_IMA47uV5vZIrvfdOlc3EaJnhxcC5eb9cvq7uiftzcr67rwitFuWg0torKstVOMXE1aclTaAyAJu-poZYDa-1D1bKh1nowGoybcBCA5uLyfzcy83Y_xl0z_mwPX9AvEjxQeg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of intention level in response to task difficulty from EEG signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Koyas, Eia ; Hocaoglu, Elif ; Patoglu, Volkan ; Cetin, Mujdat</creator><creatorcontrib>Koyas, Eia ; Hocaoglu, Elif ; Patoglu, Volkan ; Cetin, Mujdat</creatorcontrib><description>We present an approach that enables detecting intention levels of subjects in response to task difficulty utilizing an electroencephalogram (EEG) based brain-computer interface (BCI). In particular, we use linear discriminant analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with right elbow flexion and extension movements, while lifting different weights. We observe that it is possible to classify tasks of varying difficulty based on EEG signals. Additionally, we also present a correlation analysis between intention levels detected from EEG and surface electromyogram (sEMG) signals. Our experimental results suggest that it is possible to extract the intention level information from EEG signals in response to task difficulty and indicate some level of correlation between EEG and EMG. With a view towards detecting patients' intention levels during rehabilitation therapies, the proposed approach has the potential to ensure active involvement of patients throughout exercise routines and increase the efficacy of robot assisted therapies.</description><identifier>ISSN: 1551-2541</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781479911806</identifier><identifier>EISBN: 1479911801</identifier><identifier>DOI: 10.1109/MLSP.2013.6661905</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; BCI ; Correlation ; EEG ; Elbow ; Electroencephalography ; Electromyography ; Feature extraction ; intention level ; LDA ; robotic rehabilitation ; Robots ; sEMG</subject><ispartof>2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2013, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-a51d2344d592e3e8d5973c3fa60053cc3a3defe55cf8de63d7c065069c0690f03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6661905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6661905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koyas, Eia</creatorcontrib><creatorcontrib>Hocaoglu, Elif</creatorcontrib><creatorcontrib>Patoglu, Volkan</creatorcontrib><creatorcontrib>Cetin, Mujdat</creatorcontrib><title>Detection of intention level in response to task difficulty from EEG signals</title><title>2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)</title><addtitle>MLSP</addtitle><description>We present an approach that enables detecting intention levels of subjects in response to task difficulty utilizing an electroencephalogram (EEG) based brain-computer interface (BCI). In particular, we use linear discriminant analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with right elbow flexion and extension movements, while lifting different weights. We observe that it is possible to classify tasks of varying difficulty based on EEG signals. Additionally, we also present a correlation analysis between intention levels detected from EEG and surface electromyogram (sEMG) signals. Our experimental results suggest that it is possible to extract the intention level information from EEG signals in response to task difficulty and indicate some level of correlation between EEG and EMG. With a view towards detecting patients' intention levels during rehabilitation therapies, the proposed approach has the potential to ensure active involvement of patients throughout exercise routines and increase the efficacy of robot assisted therapies.</description><subject>Accuracy</subject><subject>BCI</subject><subject>Correlation</subject><subject>EEG</subject><subject>Elbow</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Feature extraction</subject><subject>intention level</subject><subject>LDA</subject><subject>robotic rehabilitation</subject><subject>Robots</subject><subject>sEMG</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>9781479911806</isbn><isbn>1479911801</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNot0NFKwzAUxvEoCo65BxBv8gKd5-Q0SXMpc06hoqCCd6OkJxLt2tFEwbe36K5-_G--i0-IC4QlIrirh_r5aakAaWmMQQf6SCycrbC0ziFWYI7FTJGtCqeqtxMxQ62xULrEM7FI6QMA0FpdkpmJ-oYz-xyHXg5Bxj5z_xcdf3M3tRw57Yc-scyDzE36lG0MIfqvLv_IMA47uV5vZIrvfdOlc3EaJnhxcC5eb9cvq7uiftzcr67rwitFuWg0torKstVOMXE1aclTaAyAJu-poZYDa-1D1bKh1nowGoybcBCA5uLyfzcy83Y_xl0z_mwPX9AvEjxQeg</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Koyas, Eia</creator><creator>Hocaoglu, Elif</creator><creator>Patoglu, Volkan</creator><creator>Cetin, Mujdat</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201309</creationdate><title>Detection of intention level in response to task difficulty from EEG signals</title><author>Koyas, Eia ; Hocaoglu, Elif ; Patoglu, Volkan ; Cetin, Mujdat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-a51d2344d592e3e8d5973c3fa60053cc3a3defe55cf8de63d7c065069c0690f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>BCI</topic><topic>Correlation</topic><topic>EEG</topic><topic>Elbow</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Feature extraction</topic><topic>intention level</topic><topic>LDA</topic><topic>robotic rehabilitation</topic><topic>Robots</topic><topic>sEMG</topic><toplevel>online_resources</toplevel><creatorcontrib>Koyas, Eia</creatorcontrib><creatorcontrib>Hocaoglu, Elif</creatorcontrib><creatorcontrib>Patoglu, Volkan</creatorcontrib><creatorcontrib>Cetin, Mujdat</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koyas, Eia</au><au>Hocaoglu, Elif</au><au>Patoglu, Volkan</au><au>Cetin, Mujdat</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of intention level in response to task difficulty from EEG signals</atitle><btitle>2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)</btitle><stitle>MLSP</stitle><date>2013-09</date><risdate>2013</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><eisbn>9781479911806</eisbn><eisbn>1479911801</eisbn><abstract>We present an approach that enables detecting intention levels of subjects in response to task difficulty utilizing an electroencephalogram (EEG) based brain-computer interface (BCI). In particular, we use linear discriminant analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with right elbow flexion and extension movements, while lifting different weights. We observe that it is possible to classify tasks of varying difficulty based on EEG signals. Additionally, we also present a correlation analysis between intention levels detected from EEG and surface electromyogram (sEMG) signals. Our experimental results suggest that it is possible to extract the intention level information from EEG signals in response to task difficulty and indicate some level of correlation between EEG and EMG. With a view towards detecting patients' intention levels during rehabilitation therapies, the proposed approach has the potential to ensure active involvement of patients throughout exercise routines and increase the efficacy of robot assisted therapies.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2013.6661905</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-2541
ispartof 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2013, p.1-6
issn 1551-2541
2378-928X
language eng
recordid cdi_ieee_primary_6661905
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
BCI
Correlation
EEG
Elbow
Electroencephalography
Electromyography
Feature extraction
intention level
LDA
robotic rehabilitation
Robots
sEMG
title Detection of intention level in response to task difficulty from EEG signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20intention%20level%20in%20response%20to%20task%20difficulty%20from%20EEG%20signals&rft.btitle=2013%20IEEE%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing%20(MLSP)&rft.au=Koyas,%20Eia&rft.date=2013-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft_id=info:doi/10.1109/MLSP.2013.6661905&rft_dat=%3Cieee_6IE%3E6661905%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479911806&rft.eisbn_list=1479911801&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6661905&rfr_iscdi=true