Acoustic feature mining for mixed speech and music playlist generation

The Internet and mobile phones allow customizing media content individually. In case of a radio program, beside a good selection of content, the quality of the transitions between pieces of audio material also play a significant role influencing the listening experience. This paper describes a study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lukacs, Gergely, Jani, Matyas, Takacs, Gyorgy
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue
container_start_page 275
container_title
container_volume
creator Lukacs, Gergely
Jani, Matyas
Takacs, Gyorgy
description The Internet and mobile phones allow customizing media content individually. In case of a radio program, beside a good selection of content, the quality of the transitions between pieces of audio material also play a significant role influencing the listening experience. This paper describes a study of speech to music transitions looking for patterns between the acoustic features and the subjective perception of the transition quality. In the course of the study a set of audio test data was created, a subjective opinion test for rating the quality of the transitions was conducted and acoustic features were extracted from both the pieces of speech and music. The collected data was analyzed using data mining methods. The most important pattern found in the data is that music and speech tempo, intensity range and Mel spectral coefficients make it possible to predict the quality of the match with a performance rate of 70%.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6658368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6658368</ieee_id><sourcerecordid>6658368</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1b754eee60a0342408a741a06373539e1e5c7afa6cffafb26d9673f1fb192ca93</originalsourceid><addsrcrecordid>eNpNjctqwzAURFXaQtMkX9CNfsAg-ephLUNo2kKgm-zDtXyVKtiysWxo_r6GdtHVzMDhzB17dhqsUEoqd_9_PLCVBFBFaUA8sW3OVyGEtFYro1fssPP9nKfoeSCc5pF4F1NMFx76canf1PA8EPkvjqnh3ZwXcmjx1sY88QslGnGKfdqwx4Btpu1frtnp8HravxfHz7eP_e5YRCemQtbLKxEZgQJUqUSFVkkUBixocCRJe4sBjQ8BQ12axhkLQYZautKjgzV7-dXGxXIextjheDsboyswFfwAZb5Iuw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Acoustic feature mining for mixed speech and music playlist generation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lukacs, Gergely ; Jani, Matyas ; Takacs, Gyorgy</creator><creatorcontrib>Lukacs, Gergely ; Jani, Matyas ; Takacs, Gyorgy</creatorcontrib><description>The Internet and mobile phones allow customizing media content individually. In case of a radio program, beside a good selection of content, the quality of the transitions between pieces of audio material also play a significant role influencing the listening experience. This paper describes a study of speech to music transitions looking for patterns between the acoustic features and the subjective perception of the transition quality. In the course of the study a set of audio test data was created, a subjective opinion test for rating the quality of the transitions was conducted and acoustic features were extracted from both the pieces of speech and music. The collected data was analyzed using data mining methods. The most important pattern found in the data is that music and speech tempo, intensity range and Mel spectral coefficients make it possible to predict the quality of the match with a performance rate of 70%.</description><identifier>ISSN: 1334-2630</identifier><identifier>ISBN: 9537044149</identifier><identifier>ISBN: 9789537044145</identifier><identifier>EISBN: 9537044149</identifier><identifier>EISBN: 9789537044145</identifier><language>eng</language><publisher>Croatian Society Electronics in Marine - ELMAR</publisher><subject>acoustic feature mining ; Data mining ; Dynamic range ; Feature extraction ; Internet ; Music ; playlist generation ; Speech ; speech to music transition ; subjective opinion test</subject><ispartof>Proceedings ELMAR-2013, 2013, p.275-278</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6658368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6658368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lukacs, Gergely</creatorcontrib><creatorcontrib>Jani, Matyas</creatorcontrib><creatorcontrib>Takacs, Gyorgy</creatorcontrib><title>Acoustic feature mining for mixed speech and music playlist generation</title><title>Proceedings ELMAR-2013</title><addtitle>ELMAR</addtitle><description>The Internet and mobile phones allow customizing media content individually. In case of a radio program, beside a good selection of content, the quality of the transitions between pieces of audio material also play a significant role influencing the listening experience. This paper describes a study of speech to music transitions looking for patterns between the acoustic features and the subjective perception of the transition quality. In the course of the study a set of audio test data was created, a subjective opinion test for rating the quality of the transitions was conducted and acoustic features were extracted from both the pieces of speech and music. The collected data was analyzed using data mining methods. The most important pattern found in the data is that music and speech tempo, intensity range and Mel spectral coefficients make it possible to predict the quality of the match with a performance rate of 70%.</description><subject>acoustic feature mining</subject><subject>Data mining</subject><subject>Dynamic range</subject><subject>Feature extraction</subject><subject>Internet</subject><subject>Music</subject><subject>playlist generation</subject><subject>Speech</subject><subject>speech to music transition</subject><subject>subjective opinion test</subject><issn>1334-2630</issn><isbn>9537044149</isbn><isbn>9789537044145</isbn><isbn>9537044149</isbn><isbn>9789537044145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNjctqwzAURFXaQtMkX9CNfsAg-ephLUNo2kKgm-zDtXyVKtiysWxo_r6GdtHVzMDhzB17dhqsUEoqd_9_PLCVBFBFaUA8sW3OVyGEtFYro1fssPP9nKfoeSCc5pF4F1NMFx76canf1PA8EPkvjqnh3ZwXcmjx1sY88QslGnGKfdqwx4Btpu1frtnp8HravxfHz7eP_e5YRCemQtbLKxEZgQJUqUSFVkkUBixocCRJe4sBjQ8BQ12axhkLQYZautKjgzV7-dXGxXIextjheDsboyswFfwAZb5Iuw</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Lukacs, Gergely</creator><creator>Jani, Matyas</creator><creator>Takacs, Gyorgy</creator><general>Croatian Society Electronics in Marine - ELMAR</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201309</creationdate><title>Acoustic feature mining for mixed speech and music playlist generation</title><author>Lukacs, Gergely ; Jani, Matyas ; Takacs, Gyorgy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1b754eee60a0342408a741a06373539e1e5c7afa6cffafb26d9673f1fb192ca93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>acoustic feature mining</topic><topic>Data mining</topic><topic>Dynamic range</topic><topic>Feature extraction</topic><topic>Internet</topic><topic>Music</topic><topic>playlist generation</topic><topic>Speech</topic><topic>speech to music transition</topic><topic>subjective opinion test</topic><toplevel>online_resources</toplevel><creatorcontrib>Lukacs, Gergely</creatorcontrib><creatorcontrib>Jani, Matyas</creatorcontrib><creatorcontrib>Takacs, Gyorgy</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lukacs, Gergely</au><au>Jani, Matyas</au><au>Takacs, Gyorgy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Acoustic feature mining for mixed speech and music playlist generation</atitle><btitle>Proceedings ELMAR-2013</btitle><stitle>ELMAR</stitle><date>2013-09</date><risdate>2013</risdate><spage>275</spage><epage>278</epage><pages>275-278</pages><issn>1334-2630</issn><isbn>9537044149</isbn><isbn>9789537044145</isbn><eisbn>9537044149</eisbn><eisbn>9789537044145</eisbn><abstract>The Internet and mobile phones allow customizing media content individually. In case of a radio program, beside a good selection of content, the quality of the transitions between pieces of audio material also play a significant role influencing the listening experience. This paper describes a study of speech to music transitions looking for patterns between the acoustic features and the subjective perception of the transition quality. In the course of the study a set of audio test data was created, a subjective opinion test for rating the quality of the transitions was conducted and acoustic features were extracted from both the pieces of speech and music. The collected data was analyzed using data mining methods. The most important pattern found in the data is that music and speech tempo, intensity range and Mel spectral coefficients make it possible to predict the quality of the match with a performance rate of 70%.</abstract><pub>Croatian Society Electronics in Marine - ELMAR</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1334-2630
ispartof Proceedings ELMAR-2013, 2013, p.275-278
issn 1334-2630
language eng
recordid cdi_ieee_primary_6658368
source IEEE Electronic Library (IEL) Conference Proceedings
subjects acoustic feature mining
Data mining
Dynamic range
Feature extraction
Internet
Music
playlist generation
Speech
speech to music transition
subjective opinion test
title Acoustic feature mining for mixed speech and music playlist generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Acoustic%20feature%20mining%20for%20mixed%20speech%20and%20music%20playlist%20generation&rft.btitle=Proceedings%20ELMAR-2013&rft.au=Lukacs,%20Gergely&rft.date=2013-09&rft.spage=275&rft.epage=278&rft.pages=275-278&rft.issn=1334-2630&rft.isbn=9537044149&rft.isbn_list=9789537044145&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6658368%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9537044149&rft.eisbn_list=9789537044145&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6658368&rfr_iscdi=true