Internet traffic classification using energy time-frequency distributions

We present a fundamentally new approach to classify application flows based on the mapping of aggregate transport-layer volume information onto the Time-Frequency (TF) plane. We initially show that the volume persona (i.e. counts of packets and bytes) of traffic flows at the transport layer exhibits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Marnerides, Angelos K., Pezaros, Dimitrios P., Hyun-chul Kim, Hutchison, David
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2518
container_issue
container_start_page 2513
container_title
container_volume
creator Marnerides, Angelos K.
Pezaros, Dimitrios P.
Hyun-chul Kim
Hutchison, David
description We present a fundamentally new approach to classify application flows based on the mapping of aggregate transport-layer volume information onto the Time-Frequency (TF) plane. We initially show that the volume persona (i.e. counts of packets and bytes) of traffic flows at the transport layer exhibits highly non-stationary characteristics, hence rendering many typical classification methods inapplicable. By virtue of this constraint, we present a novel application classification method based on the Cohen energy TF distributions for such highly non-stationary signals. We have used the Rényi information to measure the distinct complexity of any given application signal, and to subsequently construct a robust training model for every application protocol within our scheme. The effectiveness of our approach is demonstrated using real backbone and edge link network traces captured in US and Japan. Our results show that for the majority of applications, aggregate volume-based classification can reach up to 96% accuracy, while considering significantly less features in comparison with existing approaches.
doi_str_mv 10.1109/ICC.2013.6654911
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6654911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6654911</ieee_id><sourcerecordid>6654911</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-ee41183d4fd1308cad4ff0681add8bf9428284d35fc47a5db30ef823d1405abe3</originalsourceid><addsrcrecordid>eNot0L1OwzAUBWCDQKIq2ZFY8gIJvr6244wo4idSJRaYKye-rozaALYz5O0JotP5hqMzHMbugNcAvH3ou64WHLDWWskW4IIVbWNA6gYRhGgu2QZaNBUYg1erleIVat7csCKlT845NFqjkhvW91OmOFEuc7Teh7EcjzalsMrm8DWVcwrToaSJ4mEpczhR5SP9zDSNS-lCyjEM818x3bJrb4-JinNu2cfz03v3Wu3eXvrucVcFISFXRBLAoJPeAXIz2lWeawPWOTP4VgojjHSo_Cgbq9yAnLwR6EByZQfCLbv_3w1EtP-O4WTjsj8fgb9XDlDA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Internet traffic classification using energy time-frequency distributions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Marnerides, Angelos K. ; Pezaros, Dimitrios P. ; Hyun-chul Kim ; Hutchison, David</creator><creatorcontrib>Marnerides, Angelos K. ; Pezaros, Dimitrios P. ; Hyun-chul Kim ; Hutchison, David</creatorcontrib><description>We present a fundamentally new approach to classify application flows based on the mapping of aggregate transport-layer volume information onto the Time-Frequency (TF) plane. We initially show that the volume persona (i.e. counts of packets and bytes) of traffic flows at the transport layer exhibits highly non-stationary characteristics, hence rendering many typical classification methods inapplicable. By virtue of this constraint, we present a novel application classification method based on the Cohen energy TF distributions for such highly non-stationary signals. We have used the Rényi information to measure the distinct complexity of any given application signal, and to subsequently construct a robust training model for every application protocol within our scheme. The effectiveness of our approach is demonstrated using real backbone and edge link network traces captured in US and Japan. Our results show that for the majority of applications, aggregate volume-based classification can reach up to 96% accuracy, while considering significantly less features in comparison with existing approaches.</description><identifier>ISSN: 1550-3607</identifier><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 9781467331227</identifier><identifier>EISBN: 1467331228</identifier><identifier>DOI: 10.1109/ICC.2013.6654911</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Complexity theory ; Delays ; Educational institutions ; Time-frequency analysis ; Training</subject><ispartof>2013 IEEE International Conference on Communications (ICC), 2013, p.2513-2518</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6654911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6654911$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marnerides, Angelos K.</creatorcontrib><creatorcontrib>Pezaros, Dimitrios P.</creatorcontrib><creatorcontrib>Hyun-chul Kim</creatorcontrib><creatorcontrib>Hutchison, David</creatorcontrib><title>Internet traffic classification using energy time-frequency distributions</title><title>2013 IEEE International Conference on Communications (ICC)</title><addtitle>ICC</addtitle><description>We present a fundamentally new approach to classify application flows based on the mapping of aggregate transport-layer volume information onto the Time-Frequency (TF) plane. We initially show that the volume persona (i.e. counts of packets and bytes) of traffic flows at the transport layer exhibits highly non-stationary characteristics, hence rendering many typical classification methods inapplicable. By virtue of this constraint, we present a novel application classification method based on the Cohen energy TF distributions for such highly non-stationary signals. We have used the Rényi information to measure the distinct complexity of any given application signal, and to subsequently construct a robust training model for every application protocol within our scheme. The effectiveness of our approach is demonstrated using real backbone and edge link network traces captured in US and Japan. Our results show that for the majority of applications, aggregate volume-based classification can reach up to 96% accuracy, while considering significantly less features in comparison with existing approaches.</description><subject>Accuracy</subject><subject>Complexity theory</subject><subject>Delays</subject><subject>Educational institutions</subject><subject>Time-frequency analysis</subject><subject>Training</subject><issn>1550-3607</issn><issn>1938-1883</issn><isbn>9781467331227</isbn><isbn>1467331228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNot0L1OwzAUBWCDQKIq2ZFY8gIJvr6244wo4idSJRaYKye-rozaALYz5O0JotP5hqMzHMbugNcAvH3ou64WHLDWWskW4IIVbWNA6gYRhGgu2QZaNBUYg1erleIVat7csCKlT845NFqjkhvW91OmOFEuc7Teh7EcjzalsMrm8DWVcwrToaSJ4mEpczhR5SP9zDSNS-lCyjEM818x3bJrb4-JinNu2cfz03v3Wu3eXvrucVcFISFXRBLAoJPeAXIz2lWeawPWOTP4VgojjHSo_Cgbq9yAnLwR6EByZQfCLbv_3w1EtP-O4WTjsj8fgb9XDlDA</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Marnerides, Angelos K.</creator><creator>Pezaros, Dimitrios P.</creator><creator>Hyun-chul Kim</creator><creator>Hutchison, David</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201306</creationdate><title>Internet traffic classification using energy time-frequency distributions</title><author>Marnerides, Angelos K. ; Pezaros, Dimitrios P. ; Hyun-chul Kim ; Hutchison, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-ee41183d4fd1308cad4ff0681add8bf9428284d35fc47a5db30ef823d1405abe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Complexity theory</topic><topic>Delays</topic><topic>Educational institutions</topic><topic>Time-frequency analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Marnerides, Angelos K.</creatorcontrib><creatorcontrib>Pezaros, Dimitrios P.</creatorcontrib><creatorcontrib>Hyun-chul Kim</creatorcontrib><creatorcontrib>Hutchison, David</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marnerides, Angelos K.</au><au>Pezaros, Dimitrios P.</au><au>Hyun-chul Kim</au><au>Hutchison, David</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Internet traffic classification using energy time-frequency distributions</atitle><btitle>2013 IEEE International Conference on Communications (ICC)</btitle><stitle>ICC</stitle><date>2013-06</date><risdate>2013</risdate><spage>2513</spage><epage>2518</epage><pages>2513-2518</pages><issn>1550-3607</issn><eissn>1938-1883</eissn><eisbn>9781467331227</eisbn><eisbn>1467331228</eisbn><abstract>We present a fundamentally new approach to classify application flows based on the mapping of aggregate transport-layer volume information onto the Time-Frequency (TF) plane. We initially show that the volume persona (i.e. counts of packets and bytes) of traffic flows at the transport layer exhibits highly non-stationary characteristics, hence rendering many typical classification methods inapplicable. By virtue of this constraint, we present a novel application classification method based on the Cohen energy TF distributions for such highly non-stationary signals. We have used the Rényi information to measure the distinct complexity of any given application signal, and to subsequently construct a robust training model for every application protocol within our scheme. The effectiveness of our approach is demonstrated using real backbone and edge link network traces captured in US and Japan. Our results show that for the majority of applications, aggregate volume-based classification can reach up to 96% accuracy, while considering significantly less features in comparison with existing approaches.</abstract><pub>IEEE</pub><doi>10.1109/ICC.2013.6654911</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-3607
ispartof 2013 IEEE International Conference on Communications (ICC), 2013, p.2513-2518
issn 1550-3607
1938-1883
language eng
recordid cdi_ieee_primary_6654911
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Complexity theory
Delays
Educational institutions
Time-frequency analysis
Training
title Internet traffic classification using energy time-frequency distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Internet%20traffic%20classification%20using%20energy%20time-frequency%20distributions&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Communications%20(ICC)&rft.au=Marnerides,%20Angelos%20K.&rft.date=2013-06&rft.spage=2513&rft.epage=2518&rft.pages=2513-2518&rft.issn=1550-3607&rft.eissn=1938-1883&rft_id=info:doi/10.1109/ICC.2013.6654911&rft_dat=%3Cieee_6IE%3E6654911%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467331227&rft.eisbn_list=1467331228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6654911&rfr_iscdi=true