Novel hybrid bacterial foraging and spiral dynamics algorithms

This paper presents three novel hybrid optimization algorithms based on bacterial foraging and spiral dynamics algorithms and their application to modelling of flexible maneuvering systems. Hybrid bacteria-chemotaxis spiral-dynamics algorithm is a combination of chemotaxis strategy in bacterial fora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nasir, A. N. K., Tokhi, M. O., Ghani, N. M. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue
container_start_page 199
container_title
container_volume
creator Nasir, A. N. K.
Tokhi, M. O.
Ghani, N. M. A.
description This paper presents three novel hybrid optimization algorithms based on bacterial foraging and spiral dynamics algorithms and their application to modelling of flexible maneuvering systems. Hybrid bacteria-chemotaxis spiral-dynamics algorithm is a combination of chemotaxis strategy in bacterial foraging algorithm and linear adaptive spiral dynamics algorithm. Chemotactic behaviour of bacteria is a good strategy for fast exploration if large value of step size is defined in the motion. However, this results in oscillation in the search process and bacteria cannot reach optimum fitness accuracy in the final solution. On the contrary, spiral dynamics provides good exploitation strategy due to its dynamic step size. However, it suffers from getting trapped at local optima due to poor exploration in the diversification phase. Employing the chemotaxis and spiral dynamics strategies at the initial and final stages respectively will thus balance the exploration and exploitation. Hybrid spiral-bacterial foraging algorithm and hybrid chemotaxis-spiral algorithm, on the other hand are developed based on adaptation of spiral dynamics model into chemotaxis phase of bacterial foraging with the aim to guide bacteria movement globally. The proposed algorithms are used to optimize parameters of a linear parametric model of a flexible robot manipulator system. The performances of the proposed hybrid algorithms are presented in comparison to their predecessor algorithms in terms of fitness accuracy, time-domain and frequency-domain responses of the models. The results show that the proposed algorithms achieve better performance.
doi_str_mv 10.1109/UKCI.2013.6651306
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6651306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6651306</ieee_id><sourcerecordid>6651306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-be5ad21e23a9e527ef4248f18c7286b724b28ccc464400d98ee007b69b03c2ce3</originalsourceid><addsrcrecordid>eNotj8tKxDAUQCMoOI7zAeImP9Ca3KR5bAQpPgYH3TjrIUlvO5E-hqQI_XsFZ3XgLA4cQu44Kzln9mH_Xm9LYFyUSlVcMHVBbrjU1vJKKX5JVsAVFFpV-ppscv5mjAlujFF6RR4_ph_s6XHxKTbUuzBjiq6n7ZRcF8eOurGh-RTTn2uW0Q0xZOr6bkpxPg75lly1rs-4OXNN9i_PX_Vbsft83dZPuyIAiLnwWLkGOIJwFivQ2EqQpuUmaDDKa5AeTAhBKikZa6xBZEx7ZT0TAQKKNbn_70ZEPJxSHFxaDudd8QtqQEkQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Novel hybrid bacterial foraging and spiral dynamics algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nasir, A. N. K. ; Tokhi, M. O. ; Ghani, N. M. A.</creator><creatorcontrib>Nasir, A. N. K. ; Tokhi, M. O. ; Ghani, N. M. A.</creatorcontrib><description>This paper presents three novel hybrid optimization algorithms based on bacterial foraging and spiral dynamics algorithms and their application to modelling of flexible maneuvering systems. Hybrid bacteria-chemotaxis spiral-dynamics algorithm is a combination of chemotaxis strategy in bacterial foraging algorithm and linear adaptive spiral dynamics algorithm. Chemotactic behaviour of bacteria is a good strategy for fast exploration if large value of step size is defined in the motion. However, this results in oscillation in the search process and bacteria cannot reach optimum fitness accuracy in the final solution. On the contrary, spiral dynamics provides good exploitation strategy due to its dynamic step size. However, it suffers from getting trapped at local optima due to poor exploration in the diversification phase. Employing the chemotaxis and spiral dynamics strategies at the initial and final stages respectively will thus balance the exploration and exploitation. Hybrid spiral-bacterial foraging algorithm and hybrid chemotaxis-spiral algorithm, on the other hand are developed based on adaptation of spiral dynamics model into chemotaxis phase of bacterial foraging with the aim to guide bacteria movement globally. The proposed algorithms are used to optimize parameters of a linear parametric model of a flexible robot manipulator system. The performances of the proposed hybrid algorithms are presented in comparison to their predecessor algorithms in terms of fitness accuracy, time-domain and frequency-domain responses of the models. The results show that the proposed algorithms achieve better performance.</description><identifier>ISSN: 2162-7657</identifier><identifier>EISBN: 1479915661</identifier><identifier>EISBN: 9781479915682</identifier><identifier>EISBN: 9781479915668</identifier><identifier>EISBN: 1479915688</identifier><identifier>DOI: 10.1109/UKCI.2013.6651306</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adaptation models ; bacteria chemotaxis ; Convergence ; Dynamics ; flexible manipulator ; Heuristic algorithms ; Hybrid algorithm ; Microorganisms ; spiral dynamics ; Spirals ; system identification</subject><ispartof>2013 13th UK Workshop on Computational Intelligence (UKCI), 2013, p.199-205</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-be5ad21e23a9e527ef4248f18c7286b724b28ccc464400d98ee007b69b03c2ce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6651306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6651306$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nasir, A. N. K.</creatorcontrib><creatorcontrib>Tokhi, M. O.</creatorcontrib><creatorcontrib>Ghani, N. M. A.</creatorcontrib><title>Novel hybrid bacterial foraging and spiral dynamics algorithms</title><title>2013 13th UK Workshop on Computational Intelligence (UKCI)</title><addtitle>UKCI</addtitle><description>This paper presents three novel hybrid optimization algorithms based on bacterial foraging and spiral dynamics algorithms and their application to modelling of flexible maneuvering systems. Hybrid bacteria-chemotaxis spiral-dynamics algorithm is a combination of chemotaxis strategy in bacterial foraging algorithm and linear adaptive spiral dynamics algorithm. Chemotactic behaviour of bacteria is a good strategy for fast exploration if large value of step size is defined in the motion. However, this results in oscillation in the search process and bacteria cannot reach optimum fitness accuracy in the final solution. On the contrary, spiral dynamics provides good exploitation strategy due to its dynamic step size. However, it suffers from getting trapped at local optima due to poor exploration in the diversification phase. Employing the chemotaxis and spiral dynamics strategies at the initial and final stages respectively will thus balance the exploration and exploitation. Hybrid spiral-bacterial foraging algorithm and hybrid chemotaxis-spiral algorithm, on the other hand are developed based on adaptation of spiral dynamics model into chemotaxis phase of bacterial foraging with the aim to guide bacteria movement globally. The proposed algorithms are used to optimize parameters of a linear parametric model of a flexible robot manipulator system. The performances of the proposed hybrid algorithms are presented in comparison to their predecessor algorithms in terms of fitness accuracy, time-domain and frequency-domain responses of the models. The results show that the proposed algorithms achieve better performance.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>bacteria chemotaxis</subject><subject>Convergence</subject><subject>Dynamics</subject><subject>flexible manipulator</subject><subject>Heuristic algorithms</subject><subject>Hybrid algorithm</subject><subject>Microorganisms</subject><subject>spiral dynamics</subject><subject>Spirals</subject><subject>system identification</subject><issn>2162-7657</issn><isbn>1479915661</isbn><isbn>9781479915682</isbn><isbn>9781479915668</isbn><isbn>1479915688</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKxDAUQCMoOI7zAeImP9Ca3KR5bAQpPgYH3TjrIUlvO5E-hqQI_XsFZ3XgLA4cQu44Kzln9mH_Xm9LYFyUSlVcMHVBbrjU1vJKKX5JVsAVFFpV-ppscv5mjAlujFF6RR4_ph_s6XHxKTbUuzBjiq6n7ZRcF8eOurGh-RTTn2uW0Q0xZOr6bkpxPg75lly1rs-4OXNN9i_PX_Vbsft83dZPuyIAiLnwWLkGOIJwFivQ2EqQpuUmaDDKa5AeTAhBKikZa6xBZEx7ZT0TAQKKNbn_70ZEPJxSHFxaDudd8QtqQEkQ</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Nasir, A. N. K.</creator><creator>Tokhi, M. O.</creator><creator>Ghani, N. M. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201309</creationdate><title>Novel hybrid bacterial foraging and spiral dynamics algorithms</title><author>Nasir, A. N. K. ; Tokhi, M. O. ; Ghani, N. M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-be5ad21e23a9e527ef4248f18c7286b724b28ccc464400d98ee007b69b03c2ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>bacteria chemotaxis</topic><topic>Convergence</topic><topic>Dynamics</topic><topic>flexible manipulator</topic><topic>Heuristic algorithms</topic><topic>Hybrid algorithm</topic><topic>Microorganisms</topic><topic>spiral dynamics</topic><topic>Spirals</topic><topic>system identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Nasir, A. N. K.</creatorcontrib><creatorcontrib>Tokhi, M. O.</creatorcontrib><creatorcontrib>Ghani, N. M. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nasir, A. N. K.</au><au>Tokhi, M. O.</au><au>Ghani, N. M. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Novel hybrid bacterial foraging and spiral dynamics algorithms</atitle><btitle>2013 13th UK Workshop on Computational Intelligence (UKCI)</btitle><stitle>UKCI</stitle><date>2013-09</date><risdate>2013</risdate><spage>199</spage><epage>205</epage><pages>199-205</pages><issn>2162-7657</issn><eisbn>1479915661</eisbn><eisbn>9781479915682</eisbn><eisbn>9781479915668</eisbn><eisbn>1479915688</eisbn><abstract>This paper presents three novel hybrid optimization algorithms based on bacterial foraging and spiral dynamics algorithms and their application to modelling of flexible maneuvering systems. Hybrid bacteria-chemotaxis spiral-dynamics algorithm is a combination of chemotaxis strategy in bacterial foraging algorithm and linear adaptive spiral dynamics algorithm. Chemotactic behaviour of bacteria is a good strategy for fast exploration if large value of step size is defined in the motion. However, this results in oscillation in the search process and bacteria cannot reach optimum fitness accuracy in the final solution. On the contrary, spiral dynamics provides good exploitation strategy due to its dynamic step size. However, it suffers from getting trapped at local optima due to poor exploration in the diversification phase. Employing the chemotaxis and spiral dynamics strategies at the initial and final stages respectively will thus balance the exploration and exploitation. Hybrid spiral-bacterial foraging algorithm and hybrid chemotaxis-spiral algorithm, on the other hand are developed based on adaptation of spiral dynamics model into chemotaxis phase of bacterial foraging with the aim to guide bacteria movement globally. The proposed algorithms are used to optimize parameters of a linear parametric model of a flexible robot manipulator system. The performances of the proposed hybrid algorithms are presented in comparison to their predecessor algorithms in terms of fitness accuracy, time-domain and frequency-domain responses of the models. The results show that the proposed algorithms achieve better performance.</abstract><pub>IEEE</pub><doi>10.1109/UKCI.2013.6651306</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-7657
ispartof 2013 13th UK Workshop on Computational Intelligence (UKCI), 2013, p.199-205
issn 2162-7657
language eng
recordid cdi_ieee_primary_6651306
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Adaptation models
bacteria chemotaxis
Convergence
Dynamics
flexible manipulator
Heuristic algorithms
Hybrid algorithm
Microorganisms
spiral dynamics
Spirals
system identification
title Novel hybrid bacterial foraging and spiral dynamics algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Novel%20hybrid%20bacterial%20foraging%20and%20spiral%20dynamics%20algorithms&rft.btitle=2013%2013th%20UK%20Workshop%20on%20Computational%20Intelligence%20(UKCI)&rft.au=Nasir,%20A.%20N.%20K.&rft.date=2013-09&rft.spage=199&rft.epage=205&rft.pages=199-205&rft.issn=2162-7657&rft_id=info:doi/10.1109/UKCI.2013.6651306&rft_dat=%3Cieee_6IE%3E6651306%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479915661&rft.eisbn_list=9781479915682&rft.eisbn_list=9781479915668&rft.eisbn_list=1479915688&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6651306&rfr_iscdi=true