Elaeis Guineensis leaf image segmentation: A comparative study and analysis

The main intention of the research is to identify and segment the diseased-pattern section that comprised of colour and texture, apart from the background which is also known as region of interest (ROI). Hence, a comparative study related to segmentation of Elaeis Guineensis (oil palm) leaf images e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hairuddin, Muhammad Asraf, Md Tahir, Nooritawati, Baki, Shah Rizam Shah, Ashar, Nur Dalila Khirul
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue
container_start_page 248
container_title
container_volume
creator Hairuddin, Muhammad Asraf
Md Tahir, Nooritawati
Baki, Shah Rizam Shah
Ashar, Nur Dalila Khirul
description The main intention of the research is to identify and segment the diseased-pattern section that comprised of colour and texture, apart from the background which is also known as region of interest (ROI). Hence, a comparative study related to segmentation of Elaeis Guineensis (oil palm) leaf images extracted from the oil palm will be evaluated and validated. The database consists of images of leaf suffering from nutrition deficiency namely nitrogen, potassium and magnesium. Three different techniques of segmentation are investigated specifically the Otsu global threshold, local threshold and global threshold with tophat. Next, the segmentation algorithms have been developed to be capable to perform segmentation process using the leaf images that were exposed to varying illumination. Initial findings showed that Otsu global threshold is the best segmentation based on the tested images.
doi_str_mv 10.1109/ICSEngT.2013.6650179
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6650179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6650179</ieee_id><sourcerecordid>6650179</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a8c52959888badbed15a740aaf57f56fdfce9b4dec504d596c80bd9974271ee13</originalsourceid><addsrcrecordid>eNotT0FqwzAQVA-FtGlekB70AbuSbVlSb8G4SWigh_oe1tbKqNhKsJyCf19Bcxhmh2GGHUJeOUs5Z_rtWH3Xvm_SjPE8LUvBuNQP5JkXUmvOMiVXZBPCD2PRkCJX6ol81gOgC3R_cx7Rh3gOCJa6EXqkAfsR_Qyzu_h3uqPdZbzCFOVv9OabWSh4EwHDEpMv5NHCEHBz5zVpPuqmOiSnr_2x2p0Sp9mcgOpEpoVWSrVgWjRcgCwYgBXSitIa26FuC4OdYIURuuwUa43WssgkR-T5mmz_ax0inq9TfHVazve5-R_R8E2Z</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Elaeis Guineensis leaf image segmentation: A comparative study and analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hairuddin, Muhammad Asraf ; Md Tahir, Nooritawati ; Baki, Shah Rizam Shah ; Ashar, Nur Dalila Khirul</creator><creatorcontrib>Hairuddin, Muhammad Asraf ; Md Tahir, Nooritawati ; Baki, Shah Rizam Shah ; Ashar, Nur Dalila Khirul</creatorcontrib><description>The main intention of the research is to identify and segment the diseased-pattern section that comprised of colour and texture, apart from the background which is also known as region of interest (ROI). Hence, a comparative study related to segmentation of Elaeis Guineensis (oil palm) leaf images extracted from the oil palm will be evaluated and validated. The database consists of images of leaf suffering from nutrition deficiency namely nitrogen, potassium and magnesium. Three different techniques of segmentation are investigated specifically the Otsu global threshold, local threshold and global threshold with tophat. Next, the segmentation algorithms have been developed to be capable to perform segmentation process using the leaf images that were exposed to varying illumination. Initial findings showed that Otsu global threshold is the best segmentation based on the tested images.</description><identifier>EISBN: 1479910287</identifier><identifier>EISBN: 9781479910304</identifier><identifier>EISBN: 9781479910281</identifier><identifier>EISBN: 1479910309</identifier><identifier>DOI: 10.1109/ICSEngT.2013.6650179</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Histograms ; image processing ; Image segmentation ; Lighting ; Magnesium ; Nitrogen ; nutrition deficiency ; oil palm leaf ; Otsu method ; ROI ; Segmentation ; threshold</subject><ispartof>2013 IEEE 3rd International Conference on System Engineering and Technology, 2013, p.248-251</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6650179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6650179$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hairuddin, Muhammad Asraf</creatorcontrib><creatorcontrib>Md Tahir, Nooritawati</creatorcontrib><creatorcontrib>Baki, Shah Rizam Shah</creatorcontrib><creatorcontrib>Ashar, Nur Dalila Khirul</creatorcontrib><title>Elaeis Guineensis leaf image segmentation: A comparative study and analysis</title><title>2013 IEEE 3rd International Conference on System Engineering and Technology</title><addtitle>ICSEngT</addtitle><description>The main intention of the research is to identify and segment the diseased-pattern section that comprised of colour and texture, apart from the background which is also known as region of interest (ROI). Hence, a comparative study related to segmentation of Elaeis Guineensis (oil palm) leaf images extracted from the oil palm will be evaluated and validated. The database consists of images of leaf suffering from nutrition deficiency namely nitrogen, potassium and magnesium. Three different techniques of segmentation are investigated specifically the Otsu global threshold, local threshold and global threshold with tophat. Next, the segmentation algorithms have been developed to be capable to perform segmentation process using the leaf images that were exposed to varying illumination. Initial findings showed that Otsu global threshold is the best segmentation based on the tested images.</description><subject>Conferences</subject><subject>Histograms</subject><subject>image processing</subject><subject>Image segmentation</subject><subject>Lighting</subject><subject>Magnesium</subject><subject>Nitrogen</subject><subject>nutrition deficiency</subject><subject>oil palm leaf</subject><subject>Otsu method</subject><subject>ROI</subject><subject>Segmentation</subject><subject>threshold</subject><isbn>1479910287</isbn><isbn>9781479910304</isbn><isbn>9781479910281</isbn><isbn>1479910309</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT0FqwzAQVA-FtGlekB70AbuSbVlSb8G4SWigh_oe1tbKqNhKsJyCf19Bcxhmh2GGHUJeOUs5Z_rtWH3Xvm_SjPE8LUvBuNQP5JkXUmvOMiVXZBPCD2PRkCJX6ol81gOgC3R_cx7Rh3gOCJa6EXqkAfsR_Qyzu_h3uqPdZbzCFOVv9OabWSh4EwHDEpMv5NHCEHBz5zVpPuqmOiSnr_2x2p0Sp9mcgOpEpoVWSrVgWjRcgCwYgBXSitIa26FuC4OdYIURuuwUa43WssgkR-T5mmz_ax0inq9TfHVazve5-R_R8E2Z</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Hairuddin, Muhammad Asraf</creator><creator>Md Tahir, Nooritawati</creator><creator>Baki, Shah Rizam Shah</creator><creator>Ashar, Nur Dalila Khirul</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201308</creationdate><title>Elaeis Guineensis leaf image segmentation: A comparative study and analysis</title><author>Hairuddin, Muhammad Asraf ; Md Tahir, Nooritawati ; Baki, Shah Rizam Shah ; Ashar, Nur Dalila Khirul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a8c52959888badbed15a740aaf57f56fdfce9b4dec504d596c80bd9974271ee13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Conferences</topic><topic>Histograms</topic><topic>image processing</topic><topic>Image segmentation</topic><topic>Lighting</topic><topic>Magnesium</topic><topic>Nitrogen</topic><topic>nutrition deficiency</topic><topic>oil palm leaf</topic><topic>Otsu method</topic><topic>ROI</topic><topic>Segmentation</topic><topic>threshold</topic><toplevel>online_resources</toplevel><creatorcontrib>Hairuddin, Muhammad Asraf</creatorcontrib><creatorcontrib>Md Tahir, Nooritawati</creatorcontrib><creatorcontrib>Baki, Shah Rizam Shah</creatorcontrib><creatorcontrib>Ashar, Nur Dalila Khirul</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hairuddin, Muhammad Asraf</au><au>Md Tahir, Nooritawati</au><au>Baki, Shah Rizam Shah</au><au>Ashar, Nur Dalila Khirul</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Elaeis Guineensis leaf image segmentation: A comparative study and analysis</atitle><btitle>2013 IEEE 3rd International Conference on System Engineering and Technology</btitle><stitle>ICSEngT</stitle><date>2013-08</date><risdate>2013</risdate><spage>248</spage><epage>251</epage><pages>248-251</pages><eisbn>1479910287</eisbn><eisbn>9781479910304</eisbn><eisbn>9781479910281</eisbn><eisbn>1479910309</eisbn><abstract>The main intention of the research is to identify and segment the diseased-pattern section that comprised of colour and texture, apart from the background which is also known as region of interest (ROI). Hence, a comparative study related to segmentation of Elaeis Guineensis (oil palm) leaf images extracted from the oil palm will be evaluated and validated. The database consists of images of leaf suffering from nutrition deficiency namely nitrogen, potassium and magnesium. Three different techniques of segmentation are investigated specifically the Otsu global threshold, local threshold and global threshold with tophat. Next, the segmentation algorithms have been developed to be capable to perform segmentation process using the leaf images that were exposed to varying illumination. Initial findings showed that Otsu global threshold is the best segmentation based on the tested images.</abstract><pub>IEEE</pub><doi>10.1109/ICSEngT.2013.6650179</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 1479910287
ispartof 2013 IEEE 3rd International Conference on System Engineering and Technology, 2013, p.248-251
issn
language eng
recordid cdi_ieee_primary_6650179
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Conferences
Histograms
image processing
Image segmentation
Lighting
Magnesium
Nitrogen
nutrition deficiency
oil palm leaf
Otsu method
ROI
Segmentation
threshold
title Elaeis Guineensis leaf image segmentation: A comparative study and analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Elaeis%20Guineensis%20leaf%20image%20segmentation:%20A%20comparative%20study%20and%20analysis&rft.btitle=2013%20IEEE%203rd%20International%20Conference%20on%20System%20Engineering%20and%20Technology&rft.au=Hairuddin,%20Muhammad%20Asraf&rft.date=2013-08&rft.spage=248&rft.epage=251&rft.pages=248-251&rft_id=info:doi/10.1109/ICSEngT.2013.6650179&rft_dat=%3Cieee_6IE%3E6650179%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479910287&rft.eisbn_list=9781479910304&rft.eisbn_list=9781479910281&rft.eisbn_list=1479910309&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6650179&rfr_iscdi=true