Elaeis Guineensis leaf image segmentation: A comparative study and analysis
The main intention of the research is to identify and segment the diseased-pattern section that comprised of colour and texture, apart from the background which is also known as region of interest (ROI). Hence, a comparative study related to segmentation of Elaeis Guineensis (oil palm) leaf images e...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | |
container_start_page | 248 |
container_title | |
container_volume | |
creator | Hairuddin, Muhammad Asraf Md Tahir, Nooritawati Baki, Shah Rizam Shah Ashar, Nur Dalila Khirul |
description | The main intention of the research is to identify and segment the diseased-pattern section that comprised of colour and texture, apart from the background which is also known as region of interest (ROI). Hence, a comparative study related to segmentation of Elaeis Guineensis (oil palm) leaf images extracted from the oil palm will be evaluated and validated. The database consists of images of leaf suffering from nutrition deficiency namely nitrogen, potassium and magnesium. Three different techniques of segmentation are investigated specifically the Otsu global threshold, local threshold and global threshold with tophat. Next, the segmentation algorithms have been developed to be capable to perform segmentation process using the leaf images that were exposed to varying illumination. Initial findings showed that Otsu global threshold is the best segmentation based on the tested images. |
doi_str_mv | 10.1109/ICSEngT.2013.6650179 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6650179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6650179</ieee_id><sourcerecordid>6650179</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a8c52959888badbed15a740aaf57f56fdfce9b4dec504d596c80bd9974271ee13</originalsourceid><addsrcrecordid>eNotT0FqwzAQVA-FtGlekB70AbuSbVlSb8G4SWigh_oe1tbKqNhKsJyCf19Bcxhmh2GGHUJeOUs5Z_rtWH3Xvm_SjPE8LUvBuNQP5JkXUmvOMiVXZBPCD2PRkCJX6ol81gOgC3R_cx7Rh3gOCJa6EXqkAfsR_Qyzu_h3uqPdZbzCFOVv9OabWSh4EwHDEpMv5NHCEHBz5zVpPuqmOiSnr_2x2p0Sp9mcgOpEpoVWSrVgWjRcgCwYgBXSitIa26FuC4OdYIURuuwUa43WssgkR-T5mmz_ax0inq9TfHVazve5-R_R8E2Z</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Elaeis Guineensis leaf image segmentation: A comparative study and analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hairuddin, Muhammad Asraf ; Md Tahir, Nooritawati ; Baki, Shah Rizam Shah ; Ashar, Nur Dalila Khirul</creator><creatorcontrib>Hairuddin, Muhammad Asraf ; Md Tahir, Nooritawati ; Baki, Shah Rizam Shah ; Ashar, Nur Dalila Khirul</creatorcontrib><description>The main intention of the research is to identify and segment the diseased-pattern section that comprised of colour and texture, apart from the background which is also known as region of interest (ROI). Hence, a comparative study related to segmentation of Elaeis Guineensis (oil palm) leaf images extracted from the oil palm will be evaluated and validated. The database consists of images of leaf suffering from nutrition deficiency namely nitrogen, potassium and magnesium. Three different techniques of segmentation are investigated specifically the Otsu global threshold, local threshold and global threshold with tophat. Next, the segmentation algorithms have been developed to be capable to perform segmentation process using the leaf images that were exposed to varying illumination. Initial findings showed that Otsu global threshold is the best segmentation based on the tested images.</description><identifier>EISBN: 1479910287</identifier><identifier>EISBN: 9781479910304</identifier><identifier>EISBN: 9781479910281</identifier><identifier>EISBN: 1479910309</identifier><identifier>DOI: 10.1109/ICSEngT.2013.6650179</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Histograms ; image processing ; Image segmentation ; Lighting ; Magnesium ; Nitrogen ; nutrition deficiency ; oil palm leaf ; Otsu method ; ROI ; Segmentation ; threshold</subject><ispartof>2013 IEEE 3rd International Conference on System Engineering and Technology, 2013, p.248-251</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6650179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6650179$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hairuddin, Muhammad Asraf</creatorcontrib><creatorcontrib>Md Tahir, Nooritawati</creatorcontrib><creatorcontrib>Baki, Shah Rizam Shah</creatorcontrib><creatorcontrib>Ashar, Nur Dalila Khirul</creatorcontrib><title>Elaeis Guineensis leaf image segmentation: A comparative study and analysis</title><title>2013 IEEE 3rd International Conference on System Engineering and Technology</title><addtitle>ICSEngT</addtitle><description>The main intention of the research is to identify and segment the diseased-pattern section that comprised of colour and texture, apart from the background which is also known as region of interest (ROI). Hence, a comparative study related to segmentation of Elaeis Guineensis (oil palm) leaf images extracted from the oil palm will be evaluated and validated. The database consists of images of leaf suffering from nutrition deficiency namely nitrogen, potassium and magnesium. Three different techniques of segmentation are investigated specifically the Otsu global threshold, local threshold and global threshold with tophat. Next, the segmentation algorithms have been developed to be capable to perform segmentation process using the leaf images that were exposed to varying illumination. Initial findings showed that Otsu global threshold is the best segmentation based on the tested images.</description><subject>Conferences</subject><subject>Histograms</subject><subject>image processing</subject><subject>Image segmentation</subject><subject>Lighting</subject><subject>Magnesium</subject><subject>Nitrogen</subject><subject>nutrition deficiency</subject><subject>oil palm leaf</subject><subject>Otsu method</subject><subject>ROI</subject><subject>Segmentation</subject><subject>threshold</subject><isbn>1479910287</isbn><isbn>9781479910304</isbn><isbn>9781479910281</isbn><isbn>1479910309</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT0FqwzAQVA-FtGlekB70AbuSbVlSb8G4SWigh_oe1tbKqNhKsJyCf19Bcxhmh2GGHUJeOUs5Z_rtWH3Xvm_SjPE8LUvBuNQP5JkXUmvOMiVXZBPCD2PRkCJX6ol81gOgC3R_cx7Rh3gOCJa6EXqkAfsR_Qyzu_h3uqPdZbzCFOVv9OabWSh4EwHDEpMv5NHCEHBz5zVpPuqmOiSnr_2x2p0Sp9mcgOpEpoVWSrVgWjRcgCwYgBXSitIa26FuC4OdYIURuuwUa43WssgkR-T5mmz_ax0inq9TfHVazve5-R_R8E2Z</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Hairuddin, Muhammad Asraf</creator><creator>Md Tahir, Nooritawati</creator><creator>Baki, Shah Rizam Shah</creator><creator>Ashar, Nur Dalila Khirul</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201308</creationdate><title>Elaeis Guineensis leaf image segmentation: A comparative study and analysis</title><author>Hairuddin, Muhammad Asraf ; Md Tahir, Nooritawati ; Baki, Shah Rizam Shah ; Ashar, Nur Dalila Khirul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a8c52959888badbed15a740aaf57f56fdfce9b4dec504d596c80bd9974271ee13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Conferences</topic><topic>Histograms</topic><topic>image processing</topic><topic>Image segmentation</topic><topic>Lighting</topic><topic>Magnesium</topic><topic>Nitrogen</topic><topic>nutrition deficiency</topic><topic>oil palm leaf</topic><topic>Otsu method</topic><topic>ROI</topic><topic>Segmentation</topic><topic>threshold</topic><toplevel>online_resources</toplevel><creatorcontrib>Hairuddin, Muhammad Asraf</creatorcontrib><creatorcontrib>Md Tahir, Nooritawati</creatorcontrib><creatorcontrib>Baki, Shah Rizam Shah</creatorcontrib><creatorcontrib>Ashar, Nur Dalila Khirul</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hairuddin, Muhammad Asraf</au><au>Md Tahir, Nooritawati</au><au>Baki, Shah Rizam Shah</au><au>Ashar, Nur Dalila Khirul</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Elaeis Guineensis leaf image segmentation: A comparative study and analysis</atitle><btitle>2013 IEEE 3rd International Conference on System Engineering and Technology</btitle><stitle>ICSEngT</stitle><date>2013-08</date><risdate>2013</risdate><spage>248</spage><epage>251</epage><pages>248-251</pages><eisbn>1479910287</eisbn><eisbn>9781479910304</eisbn><eisbn>9781479910281</eisbn><eisbn>1479910309</eisbn><abstract>The main intention of the research is to identify and segment the diseased-pattern section that comprised of colour and texture, apart from the background which is also known as region of interest (ROI). Hence, a comparative study related to segmentation of Elaeis Guineensis (oil palm) leaf images extracted from the oil palm will be evaluated and validated. The database consists of images of leaf suffering from nutrition deficiency namely nitrogen, potassium and magnesium. Three different techniques of segmentation are investigated specifically the Otsu global threshold, local threshold and global threshold with tophat. Next, the segmentation algorithms have been developed to be capable to perform segmentation process using the leaf images that were exposed to varying illumination. Initial findings showed that Otsu global threshold is the best segmentation based on the tested images.</abstract><pub>IEEE</pub><doi>10.1109/ICSEngT.2013.6650179</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 1479910287 |
ispartof | 2013 IEEE 3rd International Conference on System Engineering and Technology, 2013, p.248-251 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6650179 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Conferences Histograms image processing Image segmentation Lighting Magnesium Nitrogen nutrition deficiency oil palm leaf Otsu method ROI Segmentation threshold |
title | Elaeis Guineensis leaf image segmentation: A comparative study and analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Elaeis%20Guineensis%20leaf%20image%20segmentation:%20A%20comparative%20study%20and%20analysis&rft.btitle=2013%20IEEE%203rd%20International%20Conference%20on%20System%20Engineering%20and%20Technology&rft.au=Hairuddin,%20Muhammad%20Asraf&rft.date=2013-08&rft.spage=248&rft.epage=251&rft.pages=248-251&rft_id=info:doi/10.1109/ICSEngT.2013.6650179&rft_dat=%3Cieee_6IE%3E6650179%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479910287&rft.eisbn_list=9781479910304&rft.eisbn_list=9781479910281&rft.eisbn_list=1479910309&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6650179&rfr_iscdi=true |