Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy
An epileptic seizure is an abnormal harmonious neural activity in the brain characterized by the presence of spikes in the electroencephalographic patterns. Petit Mal is a common form of epilepsy (a neurological disorder resulting in recurrent seizures) in children. An automated detection of Petit M...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 757 |
---|---|
container_issue | |
container_start_page | 752 |
container_title | |
container_volume | |
creator | Gopan, K. Gopika Harsha, A. Joseph, Liza Annie Kollialil, Eldho S. |
description | An epileptic seizure is an abnormal harmonious neural activity in the brain characterized by the presence of spikes in the electroencephalographic patterns. Petit Mal is a common form of epilepsy (a neurological disorder resulting in recurrent seizures) in children. An automated detection of Petit Mal seizures assists the neurologists in effective diagnosis, thereby enabling proper on-time treatment of epileptic patients. The seizures were mainly detected previously using time-frequency analysis and artificial neural networks. The proposed approach utilizes the abnormality found in the EEG of a Petit Mal patient to create an efficient detection system involving five-level wavelet decomposition based features and adaptive neuro-fuzzy interference system as the classifier. Mean Teager Energy is the only feature used in the proposed method. Unlike previous approaches, the proposed work does not suffer from large noise and sensitivity, thus giving an accuracy of 100% and run-time delay of less than 30 seconds for 100 epochs. This is a tremendous improvement over other methods. |
doi_str_mv | 10.1109/ICACCI.2013.6637268 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6637268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6637268</ieee_id><sourcerecordid>6637268</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-671e9f1bd1beb0e6c6bf5ace90081dcbc681afce08158a0b5baf54d62a6c0cb53</originalsourceid><addsrcrecordid>eNotkLFqwzAURVVKoSXNF2TRlsmpnm09WWMwaRtIaId06hAk-cmouLaxnILz9Q0k0-UM93C5jC1ArACEftmW67LcrlIB2QoxUykWd2yuVQE5qgxTUOr-xkrrNM9S-cjmMf4IIUCjQp0_se91Zfox_BFv6TR0iT-dzxN3jYkx-EAD993Al580hpHvTbPk1IeG-jjxikZyY-hafoqhrfmeTMsPZOpLadPSUE_P7MGbJtL8ljP29bo5lO_J7uPtMn6XBFByTFABaQ-2AktWEDq0XhpHWogCKmcdFmC8owvJwggrrfEyrzA16ISzMpuxxdUbiOjYD-HXDNPxdkn2DyDrVqg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gopan, K. Gopika ; Harsha, A. ; Joseph, Liza Annie ; Kollialil, Eldho S.</creator><creatorcontrib>Gopan, K. Gopika ; Harsha, A. ; Joseph, Liza Annie ; Kollialil, Eldho S.</creatorcontrib><description>An epileptic seizure is an abnormal harmonious neural activity in the brain characterized by the presence of spikes in the electroencephalographic patterns. Petit Mal is a common form of epilepsy (a neurological disorder resulting in recurrent seizures) in children. An automated detection of Petit Mal seizures assists the neurologists in effective diagnosis, thereby enabling proper on-time treatment of epileptic patients. The seizures were mainly detected previously using time-frequency analysis and artificial neural networks. The proposed approach utilizes the abnormality found in the EEG of a Petit Mal patient to create an efficient detection system involving five-level wavelet decomposition based features and adaptive neuro-fuzzy interference system as the classifier. Mean Teager Energy is the only feature used in the proposed method. Unlike previous approaches, the proposed work does not suffer from large noise and sensitivity, thus giving an accuracy of 100% and run-time delay of less than 30 seconds for 100 epochs. This is a tremendous improvement over other methods.</description><identifier>ISBN: 9781479924325</identifier><identifier>ISBN: 1479924326</identifier><identifier>EISBN: 9781467362177</identifier><identifier>EISBN: 9781479926596</identifier><identifier>EISBN: 1467362174</identifier><identifier>EISBN: 1479926590</identifier><identifier>DOI: 10.1109/ICACCI.2013.6637268</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adaptive neuro-fuzzy classifier ; Biological neural networks ; Electroencephalography ; Epilepsy ; Epileptic seizures ; Feature extraction ; Mean Teager Energy ; Petit Mal ; Training ; Wavelet analysis ; Wavelet decomposition</subject><ispartof>2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013, p.752-757</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6637268$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6637268$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gopan, K. Gopika</creatorcontrib><creatorcontrib>Harsha, A.</creatorcontrib><creatorcontrib>Joseph, Liza Annie</creatorcontrib><creatorcontrib>Kollialil, Eldho S.</creatorcontrib><title>Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy</title><title>2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI)</title><addtitle>ICACCI</addtitle><description>An epileptic seizure is an abnormal harmonious neural activity in the brain characterized by the presence of spikes in the electroencephalographic patterns. Petit Mal is a common form of epilepsy (a neurological disorder resulting in recurrent seizures) in children. An automated detection of Petit Mal seizures assists the neurologists in effective diagnosis, thereby enabling proper on-time treatment of epileptic patients. The seizures were mainly detected previously using time-frequency analysis and artificial neural networks. The proposed approach utilizes the abnormality found in the EEG of a Petit Mal patient to create an efficient detection system involving five-level wavelet decomposition based features and adaptive neuro-fuzzy interference system as the classifier. Mean Teager Energy is the only feature used in the proposed method. Unlike previous approaches, the proposed work does not suffer from large noise and sensitivity, thus giving an accuracy of 100% and run-time delay of less than 30 seconds for 100 epochs. This is a tremendous improvement over other methods.</description><subject>Accuracy</subject><subject>Adaptive neuro-fuzzy classifier</subject><subject>Biological neural networks</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Epileptic seizures</subject><subject>Feature extraction</subject><subject>Mean Teager Energy</subject><subject>Petit Mal</subject><subject>Training</subject><subject>Wavelet analysis</subject><subject>Wavelet decomposition</subject><isbn>9781479924325</isbn><isbn>1479924326</isbn><isbn>9781467362177</isbn><isbn>9781479926596</isbn><isbn>1467362174</isbn><isbn>1479926590</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkLFqwzAURVVKoSXNF2TRlsmpnm09WWMwaRtIaId06hAk-cmouLaxnILz9Q0k0-UM93C5jC1ArACEftmW67LcrlIB2QoxUykWd2yuVQE5qgxTUOr-xkrrNM9S-cjmMf4IIUCjQp0_se91Zfox_BFv6TR0iT-dzxN3jYkx-EAD993Al580hpHvTbPk1IeG-jjxikZyY-hafoqhrfmeTMsPZOpLadPSUE_P7MGbJtL8ljP29bo5lO_J7uPtMn6XBFByTFABaQ-2AktWEDq0XhpHWogCKmcdFmC8owvJwggrrfEyrzA16ISzMpuxxdUbiOjYD-HXDNPxdkn2DyDrVqg</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Gopan, K. Gopika</creator><creator>Harsha, A.</creator><creator>Joseph, Liza Annie</creator><creator>Kollialil, Eldho S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201308</creationdate><title>Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy</title><author>Gopan, K. Gopika ; Harsha, A. ; Joseph, Liza Annie ; Kollialil, Eldho S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-671e9f1bd1beb0e6c6bf5ace90081dcbc681afce08158a0b5baf54d62a6c0cb53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Adaptive neuro-fuzzy classifier</topic><topic>Biological neural networks</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Epileptic seizures</topic><topic>Feature extraction</topic><topic>Mean Teager Energy</topic><topic>Petit Mal</topic><topic>Training</topic><topic>Wavelet analysis</topic><topic>Wavelet decomposition</topic><toplevel>online_resources</toplevel><creatorcontrib>Gopan, K. Gopika</creatorcontrib><creatorcontrib>Harsha, A.</creatorcontrib><creatorcontrib>Joseph, Liza Annie</creatorcontrib><creatorcontrib>Kollialil, Eldho S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gopan, K. Gopika</au><au>Harsha, A.</au><au>Joseph, Liza Annie</au><au>Kollialil, Eldho S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy</atitle><btitle>2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI)</btitle><stitle>ICACCI</stitle><date>2013-08</date><risdate>2013</risdate><spage>752</spage><epage>757</epage><pages>752-757</pages><isbn>9781479924325</isbn><isbn>1479924326</isbn><eisbn>9781467362177</eisbn><eisbn>9781479926596</eisbn><eisbn>1467362174</eisbn><eisbn>1479926590</eisbn><abstract>An epileptic seizure is an abnormal harmonious neural activity in the brain characterized by the presence of spikes in the electroencephalographic patterns. Petit Mal is a common form of epilepsy (a neurological disorder resulting in recurrent seizures) in children. An automated detection of Petit Mal seizures assists the neurologists in effective diagnosis, thereby enabling proper on-time treatment of epileptic patients. The seizures were mainly detected previously using time-frequency analysis and artificial neural networks. The proposed approach utilizes the abnormality found in the EEG of a Petit Mal patient to create an efficient detection system involving five-level wavelet decomposition based features and adaptive neuro-fuzzy interference system as the classifier. Mean Teager Energy is the only feature used in the proposed method. Unlike previous approaches, the proposed work does not suffer from large noise and sensitivity, thus giving an accuracy of 100% and run-time delay of less than 30 seconds for 100 epochs. This is a tremendous improvement over other methods.</abstract><pub>IEEE</pub><doi>10.1109/ICACCI.2013.6637268</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781479924325 |
ispartof | 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013, p.752-757 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6637268 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Adaptive neuro-fuzzy classifier Biological neural networks Electroencephalography Epilepsy Epileptic seizures Feature extraction Mean Teager Energy Petit Mal Training Wavelet analysis Wavelet decomposition |
title | Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20neuro-fuzzy%20classifier%20for%20'Petit%20Mal'%20epilepsy%20detection%20using%20Mean%20Teager%20Energy&rft.btitle=2013%20International%20Conference%20on%20Advances%20in%20Computing,%20Communications%20and%20Informatics%20(ICACCI)&rft.au=Gopan,%20K.%20Gopika&rft.date=2013-08&rft.spage=752&rft.epage=757&rft.pages=752-757&rft.isbn=9781479924325&rft.isbn_list=1479924326&rft_id=info:doi/10.1109/ICACCI.2013.6637268&rft_dat=%3Cieee_6IE%3E6637268%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467362177&rft.eisbn_list=9781479926596&rft.eisbn_list=1467362174&rft.eisbn_list=1479926590&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6637268&rfr_iscdi=true |