Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy

An epileptic seizure is an abnormal harmonious neural activity in the brain characterized by the presence of spikes in the electroencephalographic patterns. Petit Mal is a common form of epilepsy (a neurological disorder resulting in recurrent seizures) in children. An automated detection of Petit M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gopan, K. Gopika, Harsha, A., Joseph, Liza Annie, Kollialil, Eldho S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 757
container_issue
container_start_page 752
container_title
container_volume
creator Gopan, K. Gopika
Harsha, A.
Joseph, Liza Annie
Kollialil, Eldho S.
description An epileptic seizure is an abnormal harmonious neural activity in the brain characterized by the presence of spikes in the electroencephalographic patterns. Petit Mal is a common form of epilepsy (a neurological disorder resulting in recurrent seizures) in children. An automated detection of Petit Mal seizures assists the neurologists in effective diagnosis, thereby enabling proper on-time treatment of epileptic patients. The seizures were mainly detected previously using time-frequency analysis and artificial neural networks. The proposed approach utilizes the abnormality found in the EEG of a Petit Mal patient to create an efficient detection system involving five-level wavelet decomposition based features and adaptive neuro-fuzzy interference system as the classifier. Mean Teager Energy is the only feature used in the proposed method. Unlike previous approaches, the proposed work does not suffer from large noise and sensitivity, thus giving an accuracy of 100% and run-time delay of less than 30 seconds for 100 epochs. This is a tremendous improvement over other methods.
doi_str_mv 10.1109/ICACCI.2013.6637268
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6637268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6637268</ieee_id><sourcerecordid>6637268</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-671e9f1bd1beb0e6c6bf5ace90081dcbc681afce08158a0b5baf54d62a6c0cb53</originalsourceid><addsrcrecordid>eNotkLFqwzAURVVKoSXNF2TRlsmpnm09WWMwaRtIaId06hAk-cmouLaxnILz9Q0k0-UM93C5jC1ArACEftmW67LcrlIB2QoxUykWd2yuVQE5qgxTUOr-xkrrNM9S-cjmMf4IIUCjQp0_se91Zfox_BFv6TR0iT-dzxN3jYkx-EAD993Al580hpHvTbPk1IeG-jjxikZyY-hafoqhrfmeTMsPZOpLadPSUE_P7MGbJtL8ljP29bo5lO_J7uPtMn6XBFByTFABaQ-2AktWEDq0XhpHWogCKmcdFmC8owvJwggrrfEyrzA16ISzMpuxxdUbiOjYD-HXDNPxdkn2DyDrVqg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gopan, K. Gopika ; Harsha, A. ; Joseph, Liza Annie ; Kollialil, Eldho S.</creator><creatorcontrib>Gopan, K. Gopika ; Harsha, A. ; Joseph, Liza Annie ; Kollialil, Eldho S.</creatorcontrib><description>An epileptic seizure is an abnormal harmonious neural activity in the brain characterized by the presence of spikes in the electroencephalographic patterns. Petit Mal is a common form of epilepsy (a neurological disorder resulting in recurrent seizures) in children. An automated detection of Petit Mal seizures assists the neurologists in effective diagnosis, thereby enabling proper on-time treatment of epileptic patients. The seizures were mainly detected previously using time-frequency analysis and artificial neural networks. The proposed approach utilizes the abnormality found in the EEG of a Petit Mal patient to create an efficient detection system involving five-level wavelet decomposition based features and adaptive neuro-fuzzy interference system as the classifier. Mean Teager Energy is the only feature used in the proposed method. Unlike previous approaches, the proposed work does not suffer from large noise and sensitivity, thus giving an accuracy of 100% and run-time delay of less than 30 seconds for 100 epochs. This is a tremendous improvement over other methods.</description><identifier>ISBN: 9781479924325</identifier><identifier>ISBN: 1479924326</identifier><identifier>EISBN: 9781467362177</identifier><identifier>EISBN: 9781479926596</identifier><identifier>EISBN: 1467362174</identifier><identifier>EISBN: 1479926590</identifier><identifier>DOI: 10.1109/ICACCI.2013.6637268</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adaptive neuro-fuzzy classifier ; Biological neural networks ; Electroencephalography ; Epilepsy ; Epileptic seizures ; Feature extraction ; Mean Teager Energy ; Petit Mal ; Training ; Wavelet analysis ; Wavelet decomposition</subject><ispartof>2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013, p.752-757</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6637268$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6637268$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gopan, K. Gopika</creatorcontrib><creatorcontrib>Harsha, A.</creatorcontrib><creatorcontrib>Joseph, Liza Annie</creatorcontrib><creatorcontrib>Kollialil, Eldho S.</creatorcontrib><title>Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy</title><title>2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI)</title><addtitle>ICACCI</addtitle><description>An epileptic seizure is an abnormal harmonious neural activity in the brain characterized by the presence of spikes in the electroencephalographic patterns. Petit Mal is a common form of epilepsy (a neurological disorder resulting in recurrent seizures) in children. An automated detection of Petit Mal seizures assists the neurologists in effective diagnosis, thereby enabling proper on-time treatment of epileptic patients. The seizures were mainly detected previously using time-frequency analysis and artificial neural networks. The proposed approach utilizes the abnormality found in the EEG of a Petit Mal patient to create an efficient detection system involving five-level wavelet decomposition based features and adaptive neuro-fuzzy interference system as the classifier. Mean Teager Energy is the only feature used in the proposed method. Unlike previous approaches, the proposed work does not suffer from large noise and sensitivity, thus giving an accuracy of 100% and run-time delay of less than 30 seconds for 100 epochs. This is a tremendous improvement over other methods.</description><subject>Accuracy</subject><subject>Adaptive neuro-fuzzy classifier</subject><subject>Biological neural networks</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Epileptic seizures</subject><subject>Feature extraction</subject><subject>Mean Teager Energy</subject><subject>Petit Mal</subject><subject>Training</subject><subject>Wavelet analysis</subject><subject>Wavelet decomposition</subject><isbn>9781479924325</isbn><isbn>1479924326</isbn><isbn>9781467362177</isbn><isbn>9781479926596</isbn><isbn>1467362174</isbn><isbn>1479926590</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkLFqwzAURVVKoSXNF2TRlsmpnm09WWMwaRtIaId06hAk-cmouLaxnILz9Q0k0-UM93C5jC1ArACEftmW67LcrlIB2QoxUykWd2yuVQE5qgxTUOr-xkrrNM9S-cjmMf4IIUCjQp0_se91Zfox_BFv6TR0iT-dzxN3jYkx-EAD993Al580hpHvTbPk1IeG-jjxikZyY-hafoqhrfmeTMsPZOpLadPSUE_P7MGbJtL8ljP29bo5lO_J7uPtMn6XBFByTFABaQ-2AktWEDq0XhpHWogCKmcdFmC8owvJwggrrfEyrzA16ISzMpuxxdUbiOjYD-HXDNPxdkn2DyDrVqg</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Gopan, K. Gopika</creator><creator>Harsha, A.</creator><creator>Joseph, Liza Annie</creator><creator>Kollialil, Eldho S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201308</creationdate><title>Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy</title><author>Gopan, K. Gopika ; Harsha, A. ; Joseph, Liza Annie ; Kollialil, Eldho S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-671e9f1bd1beb0e6c6bf5ace90081dcbc681afce08158a0b5baf54d62a6c0cb53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Adaptive neuro-fuzzy classifier</topic><topic>Biological neural networks</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Epileptic seizures</topic><topic>Feature extraction</topic><topic>Mean Teager Energy</topic><topic>Petit Mal</topic><topic>Training</topic><topic>Wavelet analysis</topic><topic>Wavelet decomposition</topic><toplevel>online_resources</toplevel><creatorcontrib>Gopan, K. Gopika</creatorcontrib><creatorcontrib>Harsha, A.</creatorcontrib><creatorcontrib>Joseph, Liza Annie</creatorcontrib><creatorcontrib>Kollialil, Eldho S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gopan, K. Gopika</au><au>Harsha, A.</au><au>Joseph, Liza Annie</au><au>Kollialil, Eldho S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy</atitle><btitle>2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI)</btitle><stitle>ICACCI</stitle><date>2013-08</date><risdate>2013</risdate><spage>752</spage><epage>757</epage><pages>752-757</pages><isbn>9781479924325</isbn><isbn>1479924326</isbn><eisbn>9781467362177</eisbn><eisbn>9781479926596</eisbn><eisbn>1467362174</eisbn><eisbn>1479926590</eisbn><abstract>An epileptic seizure is an abnormal harmonious neural activity in the brain characterized by the presence of spikes in the electroencephalographic patterns. Petit Mal is a common form of epilepsy (a neurological disorder resulting in recurrent seizures) in children. An automated detection of Petit Mal seizures assists the neurologists in effective diagnosis, thereby enabling proper on-time treatment of epileptic patients. The seizures were mainly detected previously using time-frequency analysis and artificial neural networks. The proposed approach utilizes the abnormality found in the EEG of a Petit Mal patient to create an efficient detection system involving five-level wavelet decomposition based features and adaptive neuro-fuzzy interference system as the classifier. Mean Teager Energy is the only feature used in the proposed method. Unlike previous approaches, the proposed work does not suffer from large noise and sensitivity, thus giving an accuracy of 100% and run-time delay of less than 30 seconds for 100 epochs. This is a tremendous improvement over other methods.</abstract><pub>IEEE</pub><doi>10.1109/ICACCI.2013.6637268</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781479924325
ispartof 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013, p.752-757
issn
language eng
recordid cdi_ieee_primary_6637268
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Adaptive neuro-fuzzy classifier
Biological neural networks
Electroencephalography
Epilepsy
Epileptic seizures
Feature extraction
Mean Teager Energy
Petit Mal
Training
Wavelet analysis
Wavelet decomposition
title Adaptive neuro-fuzzy classifier for 'Petit Mal' epilepsy detection using Mean Teager Energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20neuro-fuzzy%20classifier%20for%20'Petit%20Mal'%20epilepsy%20detection%20using%20Mean%20Teager%20Energy&rft.btitle=2013%20International%20Conference%20on%20Advances%20in%20Computing,%20Communications%20and%20Informatics%20(ICACCI)&rft.au=Gopan,%20K.%20Gopika&rft.date=2013-08&rft.spage=752&rft.epage=757&rft.pages=752-757&rft.isbn=9781479924325&rft.isbn_list=1479924326&rft_id=info:doi/10.1109/ICACCI.2013.6637268&rft_dat=%3Cieee_6IE%3E6637268%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467362177&rft.eisbn_list=9781479926596&rft.eisbn_list=1467362174&rft.eisbn_list=1479926590&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6637268&rfr_iscdi=true