Energy-Efficient Non-Boolean Computing With Spin Neurons and Resistive Memory

Emerging nonvolatile resistive memory technologies can be potentially suitable for computationally expensive analog pattern-matching tasks. However, the use of CMOS analog circuits with resistive crossbar memory (RCM) would result in large power consumption and poor scalability, thereby eschewing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2014-01, Vol.13 (1), p.23-34
Hauptverfasser: Sharad, Mrigank, Deliang Fan, Aitken, Kyle, Roy, Kaushik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging nonvolatile resistive memory technologies can be potentially suitable for computationally expensive analog pattern-matching tasks. However, the use of CMOS analog circuits with resistive crossbar memory (RCM) would result in large power consumption and poor scalability, thereby eschewing the benefits of RCM-based computation. We explore the potential of emerging spin-torque devices for RCM-based approximate computing circuits. Emerging spin-torque switching techniques may lead to nanoscale, current-mode spintronic switches that can be used for energy-efficient analog-mode data processing. We propose the use of such low-voltage, fast-switching, magnetometallic "spin neurons" for ultralow power non-Boolean computing with RCM. We present the design of analog associative memory for face recognition using RCM, where, substituting conventional analog circuits with spin neurons can achieve ~100× lower power consumption.
ISSN:1536-125X
1941-0085
DOI:10.1109/TNANO.2013.2286424