Recursive Boolean Formula Minimization Algorithms for Implication Logic

In this paper are given two novel algorithms for minimization of recursive Boolean formula (RBF), which is adequate for implementation of N-input 1-output Boolean functions (BFs) over basis {imply, false} using two memristors. Both of our algorithms are direct consequence of necessary and sufficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2013-11, Vol.32 (11), p.1829-1833
Hauptverfasser: Teodorovic, Predrag, Dautovic, Stanisa, Malbasa, Veljko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1833
container_issue 11
container_start_page 1829
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 32
creator Teodorovic, Predrag
Dautovic, Stanisa
Malbasa, Veljko
description In this paper are given two novel algorithms for minimization of recursive Boolean formula (RBF), which is adequate for implementation of N-input 1-output Boolean functions (BFs) over basis {imply, false} using two memristors. Both of our algorithms are direct consequence of necessary and sufficient conditions related to regular ordering of positive product terms within recursive formula. The results demonstrate how developed algorithms provide up to 26% gain in average number of implications and shorter recursive Boolean formula length in up to 77% of problem instances than previously published algorithms, tested on the set of all 4-input 1-output BFs.
doi_str_mv 10.1109/TCAD.2013.2269799
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6634562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6634562</ieee_id><sourcerecordid>10_1109_TCAD_2013_2269799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-f14a530b6d72e946b3802ad221eba86a3574cd9e6679f63102a05d53f7376f4b3</originalsourceid><addsrcrecordid>eNo9kM1OwkAUhSdGExF9AOOmL1C8d36ZJaIgSY2JwXUzbWdwTNshM2CiTw8NxNVZnPOdxUfIPcIEEfTjej57nlBANqFUaqX1BRmhZirnKPCSjICqaQ6g4JrcpPQNgFxQPSLLD1vvY_I_NnsKobWmzxYhdvvWZG--953_Mzsf-mzWbkL0u68uZS7EbNVtW1-fqiJsfH1Lrpxpk70755h8Ll7W89e8eF-u5rMir6kUu9whN4JBJRtFreayYlOgpqEUbWWm0jCheN1oK6XSTjI8liAawZxiSjpesTHB028dQ0rRunIbfWfib4lQDibKwUQ5mCjPJo7Mw4nx1tr_vZSMC0nZAUeOWhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recursive Boolean Formula Minimization Algorithms for Implication Logic</title><source>IEEE Electronic Library (IEL)</source><creator>Teodorovic, Predrag ; Dautovic, Stanisa ; Malbasa, Veljko</creator><creatorcontrib>Teodorovic, Predrag ; Dautovic, Stanisa ; Malbasa, Veljko</creatorcontrib><description>In this paper are given two novel algorithms for minimization of recursive Boolean formula (RBF), which is adequate for implementation of N-input 1-output Boolean functions (BFs) over basis {imply, false} using two memristors. Both of our algorithms are direct consequence of necessary and sufficient conditions related to regular ordering of positive product terms within recursive formula. The results demonstrate how developed algorithms provide up to 26% gain in average number of implications and shorter recursive Boolean formula length in up to 77% of problem instances than previously published algorithms, tested on the set of all 4-input 1-output BFs.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2013.2269799</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Heuristic algorithms ; Logic circuits ; Logic implication ; logic synthesis and minimization ; memristor-based digital logic ; Memristors ; Minimization ; Partitioning algorithms ; recursive Boolean formula ; Time complexity</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2013-11, Vol.32 (11), p.1829-1833</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-f14a530b6d72e946b3802ad221eba86a3574cd9e6679f63102a05d53f7376f4b3</citedby><cites>FETCH-LOGICAL-c265t-f14a530b6d72e946b3802ad221eba86a3574cd9e6679f63102a05d53f7376f4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6634562$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6634562$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Teodorovic, Predrag</creatorcontrib><creatorcontrib>Dautovic, Stanisa</creatorcontrib><creatorcontrib>Malbasa, Veljko</creatorcontrib><title>Recursive Boolean Formula Minimization Algorithms for Implication Logic</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>In this paper are given two novel algorithms for minimization of recursive Boolean formula (RBF), which is adequate for implementation of N-input 1-output Boolean functions (BFs) over basis {imply, false} using two memristors. Both of our algorithms are direct consequence of necessary and sufficient conditions related to regular ordering of positive product terms within recursive formula. The results demonstrate how developed algorithms provide up to 26% gain in average number of implications and shorter recursive Boolean formula length in up to 77% of problem instances than previously published algorithms, tested on the set of all 4-input 1-output BFs.</description><subject>Algorithm design and analysis</subject><subject>Heuristic algorithms</subject><subject>Logic circuits</subject><subject>Logic implication</subject><subject>logic synthesis and minimization</subject><subject>memristor-based digital logic</subject><subject>Memristors</subject><subject>Minimization</subject><subject>Partitioning algorithms</subject><subject>recursive Boolean formula</subject><subject>Time complexity</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwkAUhSdGExF9AOOmL1C8d36ZJaIgSY2JwXUzbWdwTNshM2CiTw8NxNVZnPOdxUfIPcIEEfTjej57nlBANqFUaqX1BRmhZirnKPCSjICqaQ6g4JrcpPQNgFxQPSLLD1vvY_I_NnsKobWmzxYhdvvWZG--953_Mzsf-mzWbkL0u68uZS7EbNVtW1-fqiJsfH1Lrpxpk70755h8Ll7W89e8eF-u5rMir6kUu9whN4JBJRtFreayYlOgpqEUbWWm0jCheN1oK6XSTjI8liAawZxiSjpesTHB028dQ0rRunIbfWfib4lQDibKwUQ5mCjPJo7Mw4nx1tr_vZSMC0nZAUeOWhg</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Teodorovic, Predrag</creator><creator>Dautovic, Stanisa</creator><creator>Malbasa, Veljko</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131101</creationdate><title>Recursive Boolean Formula Minimization Algorithms for Implication Logic</title><author>Teodorovic, Predrag ; Dautovic, Stanisa ; Malbasa, Veljko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-f14a530b6d72e946b3802ad221eba86a3574cd9e6679f63102a05d53f7376f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Heuristic algorithms</topic><topic>Logic circuits</topic><topic>Logic implication</topic><topic>logic synthesis and minimization</topic><topic>memristor-based digital logic</topic><topic>Memristors</topic><topic>Minimization</topic><topic>Partitioning algorithms</topic><topic>recursive Boolean formula</topic><topic>Time complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teodorovic, Predrag</creatorcontrib><creatorcontrib>Dautovic, Stanisa</creatorcontrib><creatorcontrib>Malbasa, Veljko</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teodorovic, Predrag</au><au>Dautovic, Stanisa</au><au>Malbasa, Veljko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive Boolean Formula Minimization Algorithms for Implication Logic</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>32</volume><issue>11</issue><spage>1829</spage><epage>1833</epage><pages>1829-1833</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>In this paper are given two novel algorithms for minimization of recursive Boolean formula (RBF), which is adequate for implementation of N-input 1-output Boolean functions (BFs) over basis {imply, false} using two memristors. Both of our algorithms are direct consequence of necessary and sufficient conditions related to regular ordering of positive product terms within recursive formula. The results demonstrate how developed algorithms provide up to 26% gain in average number of implications and shorter recursive Boolean formula length in up to 77% of problem instances than previously published algorithms, tested on the set of all 4-input 1-output BFs.</abstract><pub>IEEE</pub><doi>10.1109/TCAD.2013.2269799</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2013-11, Vol.32 (11), p.1829-1833
issn 0278-0070
1937-4151
language eng
recordid cdi_ieee_primary_6634562
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Heuristic algorithms
Logic circuits
Logic implication
logic synthesis and minimization
memristor-based digital logic
Memristors
Minimization
Partitioning algorithms
recursive Boolean formula
Time complexity
title Recursive Boolean Formula Minimization Algorithms for Implication Logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20Boolean%20Formula%20Minimization%20Algorithms%20for%20Implication%20Logic&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Teodorovic,%20Predrag&rft.date=2013-11-01&rft.volume=32&rft.issue=11&rft.spage=1829&rft.epage=1833&rft.pages=1829-1833&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2013.2269799&rft_dat=%3Ccrossref_RIE%3E10_1109_TCAD_2013_2269799%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6634562&rfr_iscdi=true