Geometrical FLIRT phrases for large scale place recognition in 2D range data

Place recognition, i.e., the problem of recognizing if the robot is navigating in an already visited place, is a fundamental problem in mobile robot navigation. Efficient solutions to this problem are relevant for effectively localizing robots and for creating maps in real time. Relatively few metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tipaldi, Gian Diego, Spinello, Luciano, Burgard, Wolfram
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2698
container_issue
container_start_page 2693
container_title
container_volume
creator Tipaldi, Gian Diego
Spinello, Luciano
Burgard, Wolfram
description Place recognition, i.e., the problem of recognizing if the robot is navigating in an already visited place, is a fundamental problem in mobile robot navigation. Efficient solutions to this problem are relevant for effectively localizing robots and for creating maps in real time. Relatively few methods have been proposed to efficiently solve this problem in very large environments using 2D range data. In this paper, we introduce geometrical FLIRT phrases (GFPs) as a novel retrieval method for very efficient and precise place recognition. GFPs perform approximate 2D range data matching, have low computational cost, can handle complicated partial matching patterns and are robust to noise. Experiments carried out with publicly available datasets demonstrate that GFPs largely outperform state-of-the-art approaches in 2D range-based place recognition in terms of efficiency and recall. We obtain retrieval performances with more than 85% recall at 99% precision in less than a second, even on data sets obtained from several kilometer long runs.
doi_str_mv 10.1109/ICRA.2013.6630947
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6630947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6630947</ieee_id><sourcerecordid>6630947</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f8f19477d0489f13ad88eecf52f1c9b4983fea76f31015d8a0d4c7eb23c643e3</originalsourceid><addsrcrecordid>eNo1kMtqwzAURNUXNE39AaUb_YDTq7e0DGmTBgyFkEV3QZGvUhXHNrI3_fsamq5mcYaBM4Q8MVgwBu5lu9otFxyYWGgtwElzRQpnLJPaCKWlUNdkxpUxJVjzeUMe_gEzt2TGQEEpDXf3pBiGbwDg2grp9IxUG-zOOOYUfEPX1Xa3p_1X9gMONHaZNj6fkA4TRNo3PiDNGLpTm8bUtTS1lL_S7NupU_vRP5K76JsBi0vOyX79tl-9l9XHZrtaVmViRo1ltJFNBqYGaV1kwtfWIoaoeGTBHaWzIqI3OgoGTNXWQy2DwSMXYTJFMSfPf7MJEQ99Tmeffw6XX8QvjEJRiQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Geometrical FLIRT phrases for large scale place recognition in 2D range data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tipaldi, Gian Diego ; Spinello, Luciano ; Burgard, Wolfram</creator><creatorcontrib>Tipaldi, Gian Diego ; Spinello, Luciano ; Burgard, Wolfram</creatorcontrib><description>Place recognition, i.e., the problem of recognizing if the robot is navigating in an already visited place, is a fundamental problem in mobile robot navigation. Efficient solutions to this problem are relevant for effectively localizing robots and for creating maps in real time. Relatively few methods have been proposed to efficiently solve this problem in very large environments using 2D range data. In this paper, we introduce geometrical FLIRT phrases (GFPs) as a novel retrieval method for very efficient and precise place recognition. GFPs perform approximate 2D range data matching, have low computational cost, can handle complicated partial matching patterns and are robust to noise. Experiments carried out with publicly available datasets demonstrate that GFPs largely outperform state-of-the-art approaches in 2D range-based place recognition in terms of efficiency and recall. We obtain retrieval performances with more than 85% recall at 99% precision in less than a second, even on data sets obtained from several kilometer long runs.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1467356417</identifier><identifier>ISBN: 9781467356411</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781467356435</identifier><identifier>EISBN: 1467356433</identifier><identifier>DOI: 10.1109/ICRA.2013.6630947</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clocks ; Dictionaries ; Feature extraction ; Histograms ; Kernel ; Robots ; Robustness</subject><ispartof>2013 IEEE International Conference on Robotics and Automation, 2013, p.2693-2698</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6630947$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6630947$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tipaldi, Gian Diego</creatorcontrib><creatorcontrib>Spinello, Luciano</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><title>Geometrical FLIRT phrases for large scale place recognition in 2D range data</title><title>2013 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>Place recognition, i.e., the problem of recognizing if the robot is navigating in an already visited place, is a fundamental problem in mobile robot navigation. Efficient solutions to this problem are relevant for effectively localizing robots and for creating maps in real time. Relatively few methods have been proposed to efficiently solve this problem in very large environments using 2D range data. In this paper, we introduce geometrical FLIRT phrases (GFPs) as a novel retrieval method for very efficient and precise place recognition. GFPs perform approximate 2D range data matching, have low computational cost, can handle complicated partial matching patterns and are robust to noise. Experiments carried out with publicly available datasets demonstrate that GFPs largely outperform state-of-the-art approaches in 2D range-based place recognition in terms of efficiency and recall. We obtain retrieval performances with more than 85% recall at 99% precision in less than a second, even on data sets obtained from several kilometer long runs.</description><subject>Clocks</subject><subject>Dictionaries</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Kernel</subject><subject>Robots</subject><subject>Robustness</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1467356417</isbn><isbn>9781467356411</isbn><isbn>9781467356435</isbn><isbn>1467356433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtqwzAURNUXNE39AaUb_YDTq7e0DGmTBgyFkEV3QZGvUhXHNrI3_fsamq5mcYaBM4Q8MVgwBu5lu9otFxyYWGgtwElzRQpnLJPaCKWlUNdkxpUxJVjzeUMe_gEzt2TGQEEpDXf3pBiGbwDg2grp9IxUG-zOOOYUfEPX1Xa3p_1X9gMONHaZNj6fkA4TRNo3PiDNGLpTm8bUtTS1lL_S7NupU_vRP5K76JsBi0vOyX79tl-9l9XHZrtaVmViRo1ltJFNBqYGaV1kwtfWIoaoeGTBHaWzIqI3OgoGTNXWQy2DwSMXYTJFMSfPf7MJEQ99Tmeffw6XX8QvjEJRiQ</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Tipaldi, Gian Diego</creator><creator>Spinello, Luciano</creator><creator>Burgard, Wolfram</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201305</creationdate><title>Geometrical FLIRT phrases for large scale place recognition in 2D range data</title><author>Tipaldi, Gian Diego ; Spinello, Luciano ; Burgard, Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f8f19477d0489f13ad88eecf52f1c9b4983fea76f31015d8a0d4c7eb23c643e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Clocks</topic><topic>Dictionaries</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Kernel</topic><topic>Robots</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Tipaldi, Gian Diego</creatorcontrib><creatorcontrib>Spinello, Luciano</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tipaldi, Gian Diego</au><au>Spinello, Luciano</au><au>Burgard, Wolfram</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Geometrical FLIRT phrases for large scale place recognition in 2D range data</atitle><btitle>2013 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2013-05</date><risdate>2013</risdate><spage>2693</spage><epage>2698</epage><pages>2693-2698</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1467356417</isbn><isbn>9781467356411</isbn><eisbn>9781467356435</eisbn><eisbn>1467356433</eisbn><abstract>Place recognition, i.e., the problem of recognizing if the robot is navigating in an already visited place, is a fundamental problem in mobile robot navigation. Efficient solutions to this problem are relevant for effectively localizing robots and for creating maps in real time. Relatively few methods have been proposed to efficiently solve this problem in very large environments using 2D range data. In this paper, we introduce geometrical FLIRT phrases (GFPs) as a novel retrieval method for very efficient and precise place recognition. GFPs perform approximate 2D range data matching, have low computational cost, can handle complicated partial matching patterns and are robust to noise. Experiments carried out with publicly available datasets demonstrate that GFPs largely outperform state-of-the-art approaches in 2D range-based place recognition in terms of efficiency and recall. We obtain retrieval performances with more than 85% recall at 99% precision in less than a second, even on data sets obtained from several kilometer long runs.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2013.6630947</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2013 IEEE International Conference on Robotics and Automation, 2013, p.2693-2698
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_6630947
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clocks
Dictionaries
Feature extraction
Histograms
Kernel
Robots
Robustness
title Geometrical FLIRT phrases for large scale place recognition in 2D range data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Geometrical%20FLIRT%20phrases%20for%20large%20scale%20place%20recognition%20in%202D%20range%20data&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Tipaldi,%20Gian%20Diego&rft.date=2013-05&rft.spage=2693&rft.epage=2698&rft.pages=2693-2698&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1467356417&rft.isbn_list=9781467356411&rft_id=info:doi/10.1109/ICRA.2013.6630947&rft_dat=%3Cieee_6IE%3E6630947%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467356435&rft.eisbn_list=1467356433&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6630947&rfr_iscdi=true