Poisson-driven dirt maps for efficient robot cleaning
Being able to estimate the dirt distribution in an environment makes it possible to compute efficient paths for robotic cleaners. In this paper, we present a novel approach for modeling and estimating the dynamics of the generation of dirt in an environment. Our model uses cell-wise Poisson processe...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2250 |
---|---|
container_issue | |
container_start_page | 2245 |
container_title | |
container_volume | |
creator | Hess, Jurgen Beinhofer, Maximilian Kuhner, Daniel Ruchti, Philipp Burgard, Wolfram |
description | Being able to estimate the dirt distribution in an environment makes it possible to compute efficient paths for robotic cleaners. In this paper, we present a novel approach for modeling and estimating the dynamics of the generation of dirt in an environment. Our model uses cell-wise Poisson processes on a regular grid to estimate the distribution of dirt in the environment. It allows for an effective estimation of the dynamics of the generation of dirt and for making predictions about the absolute dirt values. We propose two efficient cleaning policies that are based on the estimated dirt distributions and can easily be adapted to different needs of potential users. Through extensive experiments carried out with a modified iRobot Roomba vacuum cleaning robot and in simulation we demonstrate the effectiveness of our approach. |
doi_str_mv | 10.1109/ICRA.2013.6630880 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6630880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6630880</ieee_id><sourcerecordid>6630880</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-46db20654b8d0b74b3bc0525f2f4829ff622e2e17a7f09e7e4862efc609764fa3</originalsourceid><addsrcrecordid>eNo1kMtKw0AUQMcXGGs-QNzMD0y8c-e9LMVHoaCIgruSSe7ISJuUSRD8exfW1VkcOIvD2I2ERkoId-vV67JBkKqxVoH3cMLq4LzU1iljtTKnrELjnADvPs7Y1b-Q7pxVEgwI7TBcsnqavgAArVc62IqZlzFP0ziIvuRvGnify8z37WHiaSycUspdpmHmZYzjzLsdtUMePq_ZRWp3E9VHLtj7w_3b6klsnh_Xq-VGZJR-Ftr2EcEaHX0P0emoYgcGTcKkPYaULCIhSde6BIEcaW-RUmchOKtTqxbs9q-biWh7KHnflp_t8YD6BVPfShs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Poisson-driven dirt maps for efficient robot cleaning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hess, Jurgen ; Beinhofer, Maximilian ; Kuhner, Daniel ; Ruchti, Philipp ; Burgard, Wolfram</creator><creatorcontrib>Hess, Jurgen ; Beinhofer, Maximilian ; Kuhner, Daniel ; Ruchti, Philipp ; Burgard, Wolfram</creatorcontrib><description>Being able to estimate the dirt distribution in an environment makes it possible to compute efficient paths for robotic cleaners. In this paper, we present a novel approach for modeling and estimating the dynamics of the generation of dirt in an environment. Our model uses cell-wise Poisson processes on a regular grid to estimate the distribution of dirt in the environment. It allows for an effective estimation of the dynamics of the generation of dirt and for making predictions about the absolute dirt values. We propose two efficient cleaning policies that are based on the estimated dirt distributions and can easily be adapted to different needs of potential users. Through extensive experiments carried out with a modified iRobot Roomba vacuum cleaning robot and in simulation we demonstrate the effectiveness of our approach.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1467356417</identifier><identifier>ISBN: 9781467356411</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781467356435</identifier><identifier>EISBN: 1467356433</identifier><identifier>DOI: 10.1109/ICRA.2013.6630880</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric measurements ; Cleaning ; Estimation ; Particle measurements ; Simultaneous localization and mapping</subject><ispartof>2013 IEEE International Conference on Robotics and Automation, 2013, p.2245-2250</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6630880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6630880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hess, Jurgen</creatorcontrib><creatorcontrib>Beinhofer, Maximilian</creatorcontrib><creatorcontrib>Kuhner, Daniel</creatorcontrib><creatorcontrib>Ruchti, Philipp</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><title>Poisson-driven dirt maps for efficient robot cleaning</title><title>2013 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>Being able to estimate the dirt distribution in an environment makes it possible to compute efficient paths for robotic cleaners. In this paper, we present a novel approach for modeling and estimating the dynamics of the generation of dirt in an environment. Our model uses cell-wise Poisson processes on a regular grid to estimate the distribution of dirt in the environment. It allows for an effective estimation of the dynamics of the generation of dirt and for making predictions about the absolute dirt values. We propose two efficient cleaning policies that are based on the estimated dirt distributions and can easily be adapted to different needs of potential users. Through extensive experiments carried out with a modified iRobot Roomba vacuum cleaning robot and in simulation we demonstrate the effectiveness of our approach.</description><subject>Atmospheric measurements</subject><subject>Cleaning</subject><subject>Estimation</subject><subject>Particle measurements</subject><subject>Simultaneous localization and mapping</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1467356417</isbn><isbn>9781467356411</isbn><isbn>9781467356435</isbn><isbn>1467356433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKw0AUQMcXGGs-QNzMD0y8c-e9LMVHoaCIgruSSe7ISJuUSRD8exfW1VkcOIvD2I2ERkoId-vV67JBkKqxVoH3cMLq4LzU1iljtTKnrELjnADvPs7Y1b-Q7pxVEgwI7TBcsnqavgAArVc62IqZlzFP0ziIvuRvGnify8z37WHiaSycUspdpmHmZYzjzLsdtUMePq_ZRWp3E9VHLtj7w_3b6klsnh_Xq-VGZJR-Ftr2EcEaHX0P0emoYgcGTcKkPYaULCIhSde6BIEcaW-RUmchOKtTqxbs9q-biWh7KHnflp_t8YD6BVPfShs</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hess, Jurgen</creator><creator>Beinhofer, Maximilian</creator><creator>Kuhner, Daniel</creator><creator>Ruchti, Philipp</creator><creator>Burgard, Wolfram</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Poisson-driven dirt maps for efficient robot cleaning</title><author>Hess, Jurgen ; Beinhofer, Maximilian ; Kuhner, Daniel ; Ruchti, Philipp ; Burgard, Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-46db20654b8d0b74b3bc0525f2f4829ff622e2e17a7f09e7e4862efc609764fa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmospheric measurements</topic><topic>Cleaning</topic><topic>Estimation</topic><topic>Particle measurements</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Hess, Jurgen</creatorcontrib><creatorcontrib>Beinhofer, Maximilian</creatorcontrib><creatorcontrib>Kuhner, Daniel</creatorcontrib><creatorcontrib>Ruchti, Philipp</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hess, Jurgen</au><au>Beinhofer, Maximilian</au><au>Kuhner, Daniel</au><au>Ruchti, Philipp</au><au>Burgard, Wolfram</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Poisson-driven dirt maps for efficient robot cleaning</atitle><btitle>2013 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>2245</spage><epage>2250</epage><pages>2245-2250</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1467356417</isbn><isbn>9781467356411</isbn><eisbn>9781467356435</eisbn><eisbn>1467356433</eisbn><abstract>Being able to estimate the dirt distribution in an environment makes it possible to compute efficient paths for robotic cleaners. In this paper, we present a novel approach for modeling and estimating the dynamics of the generation of dirt in an environment. Our model uses cell-wise Poisson processes on a regular grid to estimate the distribution of dirt in the environment. It allows for an effective estimation of the dynamics of the generation of dirt and for making predictions about the absolute dirt values. We propose two efficient cleaning policies that are based on the estimated dirt distributions and can easily be adapted to different needs of potential users. Through extensive experiments carried out with a modified iRobot Roomba vacuum cleaning robot and in simulation we demonstrate the effectiveness of our approach.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2013.6630880</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | 2013 IEEE International Conference on Robotics and Automation, 2013, p.2245-2250 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_6630880 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Atmospheric measurements Cleaning Estimation Particle measurements Simultaneous localization and mapping |
title | Poisson-driven dirt maps for efficient robot cleaning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Poisson-driven%20dirt%20maps%20for%20efficient%20robot%20cleaning&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Hess,%20Jurgen&rft.date=2013-01-01&rft.spage=2245&rft.epage=2250&rft.pages=2245-2250&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1467356417&rft.isbn_list=9781467356411&rft_id=info:doi/10.1109/ICRA.2013.6630880&rft_dat=%3Cieee_6IE%3E6630880%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467356435&rft.eisbn_list=1467356433&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6630880&rfr_iscdi=true |