Poisson-driven dirt maps for efficient robot cleaning

Being able to estimate the dirt distribution in an environment makes it possible to compute efficient paths for robotic cleaners. In this paper, we present a novel approach for modeling and estimating the dynamics of the generation of dirt in an environment. Our model uses cell-wise Poisson processe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hess, Jurgen, Beinhofer, Maximilian, Kuhner, Daniel, Ruchti, Philipp, Burgard, Wolfram
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2250
container_issue
container_start_page 2245
container_title
container_volume
creator Hess, Jurgen
Beinhofer, Maximilian
Kuhner, Daniel
Ruchti, Philipp
Burgard, Wolfram
description Being able to estimate the dirt distribution in an environment makes it possible to compute efficient paths for robotic cleaners. In this paper, we present a novel approach for modeling and estimating the dynamics of the generation of dirt in an environment. Our model uses cell-wise Poisson processes on a regular grid to estimate the distribution of dirt in the environment. It allows for an effective estimation of the dynamics of the generation of dirt and for making predictions about the absolute dirt values. We propose two efficient cleaning policies that are based on the estimated dirt distributions and can easily be adapted to different needs of potential users. Through extensive experiments carried out with a modified iRobot Roomba vacuum cleaning robot and in simulation we demonstrate the effectiveness of our approach.
doi_str_mv 10.1109/ICRA.2013.6630880
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6630880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6630880</ieee_id><sourcerecordid>6630880</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-46db20654b8d0b74b3bc0525f2f4829ff622e2e17a7f09e7e4862efc609764fa3</originalsourceid><addsrcrecordid>eNo1kMtKw0AUQMcXGGs-QNzMD0y8c-e9LMVHoaCIgruSSe7ISJuUSRD8exfW1VkcOIvD2I2ERkoId-vV67JBkKqxVoH3cMLq4LzU1iljtTKnrELjnADvPs7Y1b-Q7pxVEgwI7TBcsnqavgAArVc62IqZlzFP0ziIvuRvGnify8z37WHiaSycUspdpmHmZYzjzLsdtUMePq_ZRWp3E9VHLtj7w_3b6klsnh_Xq-VGZJR-Ftr2EcEaHX0P0emoYgcGTcKkPYaULCIhSde6BIEcaW-RUmchOKtTqxbs9q-biWh7KHnflp_t8YD6BVPfShs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Poisson-driven dirt maps for efficient robot cleaning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hess, Jurgen ; Beinhofer, Maximilian ; Kuhner, Daniel ; Ruchti, Philipp ; Burgard, Wolfram</creator><creatorcontrib>Hess, Jurgen ; Beinhofer, Maximilian ; Kuhner, Daniel ; Ruchti, Philipp ; Burgard, Wolfram</creatorcontrib><description>Being able to estimate the dirt distribution in an environment makes it possible to compute efficient paths for robotic cleaners. In this paper, we present a novel approach for modeling and estimating the dynamics of the generation of dirt in an environment. Our model uses cell-wise Poisson processes on a regular grid to estimate the distribution of dirt in the environment. It allows for an effective estimation of the dynamics of the generation of dirt and for making predictions about the absolute dirt values. We propose two efficient cleaning policies that are based on the estimated dirt distributions and can easily be adapted to different needs of potential users. Through extensive experiments carried out with a modified iRobot Roomba vacuum cleaning robot and in simulation we demonstrate the effectiveness of our approach.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1467356417</identifier><identifier>ISBN: 9781467356411</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781467356435</identifier><identifier>EISBN: 1467356433</identifier><identifier>DOI: 10.1109/ICRA.2013.6630880</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric measurements ; Cleaning ; Estimation ; Particle measurements ; Simultaneous localization and mapping</subject><ispartof>2013 IEEE International Conference on Robotics and Automation, 2013, p.2245-2250</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6630880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6630880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hess, Jurgen</creatorcontrib><creatorcontrib>Beinhofer, Maximilian</creatorcontrib><creatorcontrib>Kuhner, Daniel</creatorcontrib><creatorcontrib>Ruchti, Philipp</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><title>Poisson-driven dirt maps for efficient robot cleaning</title><title>2013 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>Being able to estimate the dirt distribution in an environment makes it possible to compute efficient paths for robotic cleaners. In this paper, we present a novel approach for modeling and estimating the dynamics of the generation of dirt in an environment. Our model uses cell-wise Poisson processes on a regular grid to estimate the distribution of dirt in the environment. It allows for an effective estimation of the dynamics of the generation of dirt and for making predictions about the absolute dirt values. We propose two efficient cleaning policies that are based on the estimated dirt distributions and can easily be adapted to different needs of potential users. Through extensive experiments carried out with a modified iRobot Roomba vacuum cleaning robot and in simulation we demonstrate the effectiveness of our approach.</description><subject>Atmospheric measurements</subject><subject>Cleaning</subject><subject>Estimation</subject><subject>Particle measurements</subject><subject>Simultaneous localization and mapping</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1467356417</isbn><isbn>9781467356411</isbn><isbn>9781467356435</isbn><isbn>1467356433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKw0AUQMcXGGs-QNzMD0y8c-e9LMVHoaCIgruSSe7ISJuUSRD8exfW1VkcOIvD2I2ERkoId-vV67JBkKqxVoH3cMLq4LzU1iljtTKnrELjnADvPs7Y1b-Q7pxVEgwI7TBcsnqavgAArVc62IqZlzFP0ziIvuRvGnify8z37WHiaSycUspdpmHmZYzjzLsdtUMePq_ZRWp3E9VHLtj7w_3b6klsnh_Xq-VGZJR-Ftr2EcEaHX0P0emoYgcGTcKkPYaULCIhSde6BIEcaW-RUmchOKtTqxbs9q-biWh7KHnflp_t8YD6BVPfShs</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hess, Jurgen</creator><creator>Beinhofer, Maximilian</creator><creator>Kuhner, Daniel</creator><creator>Ruchti, Philipp</creator><creator>Burgard, Wolfram</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>Poisson-driven dirt maps for efficient robot cleaning</title><author>Hess, Jurgen ; Beinhofer, Maximilian ; Kuhner, Daniel ; Ruchti, Philipp ; Burgard, Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-46db20654b8d0b74b3bc0525f2f4829ff622e2e17a7f09e7e4862efc609764fa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmospheric measurements</topic><topic>Cleaning</topic><topic>Estimation</topic><topic>Particle measurements</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Hess, Jurgen</creatorcontrib><creatorcontrib>Beinhofer, Maximilian</creatorcontrib><creatorcontrib>Kuhner, Daniel</creatorcontrib><creatorcontrib>Ruchti, Philipp</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hess, Jurgen</au><au>Beinhofer, Maximilian</au><au>Kuhner, Daniel</au><au>Ruchti, Philipp</au><au>Burgard, Wolfram</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Poisson-driven dirt maps for efficient robot cleaning</atitle><btitle>2013 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>2245</spage><epage>2250</epage><pages>2245-2250</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1467356417</isbn><isbn>9781467356411</isbn><eisbn>9781467356435</eisbn><eisbn>1467356433</eisbn><abstract>Being able to estimate the dirt distribution in an environment makes it possible to compute efficient paths for robotic cleaners. In this paper, we present a novel approach for modeling and estimating the dynamics of the generation of dirt in an environment. Our model uses cell-wise Poisson processes on a regular grid to estimate the distribution of dirt in the environment. It allows for an effective estimation of the dynamics of the generation of dirt and for making predictions about the absolute dirt values. We propose two efficient cleaning policies that are based on the estimated dirt distributions and can easily be adapted to different needs of potential users. Through extensive experiments carried out with a modified iRobot Roomba vacuum cleaning robot and in simulation we demonstrate the effectiveness of our approach.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2013.6630880</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2013 IEEE International Conference on Robotics and Automation, 2013, p.2245-2250
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_6630880
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Atmospheric measurements
Cleaning
Estimation
Particle measurements
Simultaneous localization and mapping
title Poisson-driven dirt maps for efficient robot cleaning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Poisson-driven%20dirt%20maps%20for%20efficient%20robot%20cleaning&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Hess,%20Jurgen&rft.date=2013-01-01&rft.spage=2245&rft.epage=2250&rft.pages=2245-2250&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1467356417&rft.isbn_list=9781467356411&rft_id=info:doi/10.1109/ICRA.2013.6630880&rft_dat=%3Cieee_6IE%3E6630880%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467356435&rft.eisbn_list=1467356433&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6630880&rfr_iscdi=true