Robot self-assembly by folding: A printed inchworm robot
Printing and folding are fast and inexpensive methods for prototyping complex machines. Self-assembly of the folding step would expand the possibilities of this method to include applications where external manipulation is costly, such as micro-assembly, mass production, and space applications. This...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 282 |
---|---|
container_issue | |
container_start_page | 277 |
container_title | |
container_volume | |
creator | Felton, Samuel M. Tolley, Michael T. Onal, Cagdas D. Rus, Daniela Wood, Robert J. |
description | Printing and folding are fast and inexpensive methods for prototyping complex machines. Self-assembly of the folding step would expand the possibilities of this method to include applications where external manipulation is costly, such as micro-assembly, mass production, and space applications. This paper presents a method for self-folding of printed robots from two-dimensional materials based on shape memory polymers actuated by joule heating using embedded circuits. This method was shown to be capable of sequential folding, angle-controlled folds, slot-and-tab assembly, and mountain and valley folds. An inchworm robot was designed to demonstrate the merits of this technique. Upon the application of sufficient current, the robot was able to fold into its functional form with fold angle deviations within six degrees. This printed robot demonstrated locomotion at a speed of two millimeters per second. |
doi_str_mv | 10.1109/ICRA.2013.6630588 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6630588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6630588</ieee_id><sourcerecordid>6630588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-9dcc62317465261487ce950551f1d886c0a6bf12449ee5678b39622274d51bd3</originalsourceid><addsrcrecordid>eNo1kMtKxDAYheMNHMc-gLjJC6Tmz-VP4q4ULwMDwjALd0ObpFrpRZqC9O1VHFdncfgOH4eQG-A5AHd3m3JX5IKDzBEl19aekMwZCwqN1KikPiUroY1h3JrXM3L1X4A5JyvgmjNlhLskWUofnHOBViqHK2J3Yz3ONMWuYVVKsa-7hdYLbcYutMPbPS3o59QOcwy0Hfz71zj1dPpFrslFU3UpZsdck_3jw758ZtuXp01ZbJkX1s3MBe9RSDAKtUBQ1vjoNNcaGgjWoucV1g0IpVyMGo2tpUMhhFFBQx3kmtz-zbYxxsOPSl9Ny-H4gfwGlWJJkw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robot self-assembly by folding: A printed inchworm robot</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Felton, Samuel M. ; Tolley, Michael T. ; Onal, Cagdas D. ; Rus, Daniela ; Wood, Robert J.</creator><creatorcontrib>Felton, Samuel M. ; Tolley, Michael T. ; Onal, Cagdas D. ; Rus, Daniela ; Wood, Robert J.</creatorcontrib><description>Printing and folding are fast and inexpensive methods for prototyping complex machines. Self-assembly of the folding step would expand the possibilities of this method to include applications where external manipulation is costly, such as micro-assembly, mass production, and space applications. This paper presents a method for self-folding of printed robots from two-dimensional materials based on shape memory polymers actuated by joule heating using embedded circuits. This method was shown to be capable of sequential folding, angle-controlled folds, slot-and-tab assembly, and mountain and valley folds. An inchworm robot was designed to demonstrate the merits of this technique. Upon the application of sufficient current, the robot was able to fold into its functional form with fold angle deviations within six degrees. This printed robot demonstrated locomotion at a speed of two millimeters per second.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1467356417</identifier><identifier>ISBN: 9781467356411</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781467356435</identifier><identifier>EISBN: 1467356433</identifier><identifier>DOI: 10.1109/ICRA.2013.6630588</identifier><language>eng</language><publisher>IEEE</publisher><subject>Heating ; Laser modes ; Polymers ; Robots</subject><ispartof>2013 IEEE International Conference on Robotics and Automation, 2013, p.277-282</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-9dcc62317465261487ce950551f1d886c0a6bf12449ee5678b39622274d51bd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6630588$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6630588$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Felton, Samuel M.</creatorcontrib><creatorcontrib>Tolley, Michael T.</creatorcontrib><creatorcontrib>Onal, Cagdas D.</creatorcontrib><creatorcontrib>Rus, Daniela</creatorcontrib><creatorcontrib>Wood, Robert J.</creatorcontrib><title>Robot self-assembly by folding: A printed inchworm robot</title><title>2013 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>Printing and folding are fast and inexpensive methods for prototyping complex machines. Self-assembly of the folding step would expand the possibilities of this method to include applications where external manipulation is costly, such as micro-assembly, mass production, and space applications. This paper presents a method for self-folding of printed robots from two-dimensional materials based on shape memory polymers actuated by joule heating using embedded circuits. This method was shown to be capable of sequential folding, angle-controlled folds, slot-and-tab assembly, and mountain and valley folds. An inchworm robot was designed to demonstrate the merits of this technique. Upon the application of sufficient current, the robot was able to fold into its functional form with fold angle deviations within six degrees. This printed robot demonstrated locomotion at a speed of two millimeters per second.</description><subject>Heating</subject><subject>Laser modes</subject><subject>Polymers</subject><subject>Robots</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1467356417</isbn><isbn>9781467356411</isbn><isbn>9781467356435</isbn><isbn>1467356433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKxDAYheMNHMc-gLjJC6Tmz-VP4q4ULwMDwjALd0ObpFrpRZqC9O1VHFdncfgOH4eQG-A5AHd3m3JX5IKDzBEl19aekMwZCwqN1KikPiUroY1h3JrXM3L1X4A5JyvgmjNlhLskWUofnHOBViqHK2J3Yz3ONMWuYVVKsa-7hdYLbcYutMPbPS3o59QOcwy0Hfz71zj1dPpFrslFU3UpZsdck_3jw758ZtuXp01ZbJkX1s3MBe9RSDAKtUBQ1vjoNNcaGgjWoucV1g0IpVyMGo2tpUMhhFFBQx3kmtz-zbYxxsOPSl9Ny-H4gfwGlWJJkw</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Felton, Samuel M.</creator><creator>Tolley, Michael T.</creator><creator>Onal, Cagdas D.</creator><creator>Rus, Daniela</creator><creator>Wood, Robert J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201305</creationdate><title>Robot self-assembly by folding: A printed inchworm robot</title><author>Felton, Samuel M. ; Tolley, Michael T. ; Onal, Cagdas D. ; Rus, Daniela ; Wood, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-9dcc62317465261487ce950551f1d886c0a6bf12449ee5678b39622274d51bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Heating</topic><topic>Laser modes</topic><topic>Polymers</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Felton, Samuel M.</creatorcontrib><creatorcontrib>Tolley, Michael T.</creatorcontrib><creatorcontrib>Onal, Cagdas D.</creatorcontrib><creatorcontrib>Rus, Daniela</creatorcontrib><creatorcontrib>Wood, Robert J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Felton, Samuel M.</au><au>Tolley, Michael T.</au><au>Onal, Cagdas D.</au><au>Rus, Daniela</au><au>Wood, Robert J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robot self-assembly by folding: A printed inchworm robot</atitle><btitle>2013 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2013-05</date><risdate>2013</risdate><spage>277</spage><epage>282</epage><pages>277-282</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1467356417</isbn><isbn>9781467356411</isbn><eisbn>9781467356435</eisbn><eisbn>1467356433</eisbn><abstract>Printing and folding are fast and inexpensive methods for prototyping complex machines. Self-assembly of the folding step would expand the possibilities of this method to include applications where external manipulation is costly, such as micro-assembly, mass production, and space applications. This paper presents a method for self-folding of printed robots from two-dimensional materials based on shape memory polymers actuated by joule heating using embedded circuits. This method was shown to be capable of sequential folding, angle-controlled folds, slot-and-tab assembly, and mountain and valley folds. An inchworm robot was designed to demonstrate the merits of this technique. Upon the application of sufficient current, the robot was able to fold into its functional form with fold angle deviations within six degrees. This printed robot demonstrated locomotion at a speed of two millimeters per second.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2013.6630588</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | 2013 IEEE International Conference on Robotics and Automation, 2013, p.277-282 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_6630588 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Heating Laser modes Polymers Robots |
title | Robot self-assembly by folding: A printed inchworm robot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robot%20self-assembly%20by%20folding:%20A%20printed%20inchworm%20robot&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Felton,%20Samuel%20M.&rft.date=2013-05&rft.spage=277&rft.epage=282&rft.pages=277-282&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1467356417&rft.isbn_list=9781467356411&rft_id=info:doi/10.1109/ICRA.2013.6630588&rft_dat=%3Cieee_6IE%3E6630588%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467356435&rft.eisbn_list=1467356433&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6630588&rfr_iscdi=true |