Traffic panels detection using visual appearance

Traffic signs detection has been thoroughly studied for a long time. However, road panels detection still remains a challenge in computer vision due to the huge variability of types of traffic panels, as the information depicted in them is not restricted. This paper presents a method to detect traff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gonzalez, A., Bergasa, L.M., Yebes, J. Javier, Almazan, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1226
container_issue
container_start_page 1221
container_title
container_volume
creator Gonzalez, A.
Bergasa, L.M.
Yebes, J. Javier
Almazan, J.
description Traffic signs detection has been thoroughly studied for a long time. However, road panels detection still remains a challenge in computer vision due to the huge variability of types of traffic panels, as the information depicted in them is not restricted. This paper presents a method to detect traffic panels in street-level images as an application to Intelligent Transportation Systems (ITS), since the main purpose can be to make an automatic inventory of the traffic panels located in a road to support maintenance and to assist drivers in order to improve human quality of life. The proposed method extracts local descriptors at some interest points after applying a color detection method for blue and white pixels. Then, the images are modeled using a Bag of Visual Words technique and classified using Naïve Bayes theory and SVM. Experimental results on real images from Google Street View prove the efficiency of the proposed method and give way to using street-level images for different applications on robotics and ITS.
doi_str_mv 10.1109/IVS.2013.6629633
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6629633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6629633</ieee_id><sourcerecordid>6629633</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-92e974b7b192a26a87ad11aa6f83a7dd26263f6fdf233700f4bade41b69f50a23</originalsourceid><addsrcrecordid>eNotz0FLwzAUwPEoE-ymd8FLv0Br3kvy0hxl6BwMPLh5Ha9NIpFaS9MJfnsP7vS__eAvxB3IGkC6h-37W40SVE2EjpS6EEvQZBVao92lKJA0VhZBL0QBTkElTWOvxTLnTymNQYRCyP3EMaauHHkIfS59mEM3p--hPOU0fJQ_KZ-4L3kcA088dOFGXEXuc7g9dyUOz0_79Uu1e91s14-7KoE1c-UwOKtb24JDRuLGsgdgptgott4jIalI0UdUykoZdcs-aGjJRSMZ1Urc_7sphHAcp_TF0-_xfKr-ANlPRPQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Traffic panels detection using visual appearance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gonzalez, A. ; Bergasa, L.M. ; Yebes, J. Javier ; Almazan, J.</creator><creatorcontrib>Gonzalez, A. ; Bergasa, L.M. ; Yebes, J. Javier ; Almazan, J.</creatorcontrib><description>Traffic signs detection has been thoroughly studied for a long time. However, road panels detection still remains a challenge in computer vision due to the huge variability of types of traffic panels, as the information depicted in them is not restricted. This paper presents a method to detect traffic panels in street-level images as an application to Intelligent Transportation Systems (ITS), since the main purpose can be to make an automatic inventory of the traffic panels located in a road to support maintenance and to assist drivers in order to improve human quality of life. The proposed method extracts local descriptors at some interest points after applying a color detection method for blue and white pixels. Then, the images are modeled using a Bag of Visual Words technique and classified using Naïve Bayes theory and SVM. Experimental results on real images from Google Street View prove the efficiency of the proposed method and give way to using street-level images for different applications on robotics and ITS.</description><identifier>ISSN: 1931-0587</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1467327549</identifier><identifier>EISBN: 9781467327541</identifier><identifier>EISBN: 9781467327558</identifier><identifier>EISBN: 1467327557</identifier><identifier>DOI: 10.1109/IVS.2013.6629633</identifier><language>eng</language><publisher>IEEE</publisher><subject>Histograms ; Image color analysis ; Image edge detection ; Roads ; Sensitivity ; Training ; Visualization</subject><ispartof>2013 IEEE Intelligent Vehicles Symposium (IV), 2013, p.1221-1226</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6629633$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6629633$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gonzalez, A.</creatorcontrib><creatorcontrib>Bergasa, L.M.</creatorcontrib><creatorcontrib>Yebes, J. Javier</creatorcontrib><creatorcontrib>Almazan, J.</creatorcontrib><title>Traffic panels detection using visual appearance</title><title>2013 IEEE Intelligent Vehicles Symposium (IV)</title><addtitle>IVS</addtitle><description>Traffic signs detection has been thoroughly studied for a long time. However, road panels detection still remains a challenge in computer vision due to the huge variability of types of traffic panels, as the information depicted in them is not restricted. This paper presents a method to detect traffic panels in street-level images as an application to Intelligent Transportation Systems (ITS), since the main purpose can be to make an automatic inventory of the traffic panels located in a road to support maintenance and to assist drivers in order to improve human quality of life. The proposed method extracts local descriptors at some interest points after applying a color detection method for blue and white pixels. Then, the images are modeled using a Bag of Visual Words technique and classified using Naïve Bayes theory and SVM. Experimental results on real images from Google Street View prove the efficiency of the proposed method and give way to using street-level images for different applications on robotics and ITS.</description><subject>Histograms</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Roads</subject><subject>Sensitivity</subject><subject>Training</subject><subject>Visualization</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>1467327549</isbn><isbn>9781467327541</isbn><isbn>9781467327558</isbn><isbn>1467327557</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotz0FLwzAUwPEoE-ymd8FLv0Br3kvy0hxl6BwMPLh5Ha9NIpFaS9MJfnsP7vS__eAvxB3IGkC6h-37W40SVE2EjpS6EEvQZBVao92lKJA0VhZBL0QBTkElTWOvxTLnTymNQYRCyP3EMaauHHkIfS59mEM3p--hPOU0fJQ_KZ-4L3kcA088dOFGXEXuc7g9dyUOz0_79Uu1e91s14-7KoE1c-UwOKtb24JDRuLGsgdgptgott4jIalI0UdUykoZdcs-aGjJRSMZ1Urc_7sphHAcp_TF0-_xfKr-ANlPRPQ</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Gonzalez, A.</creator><creator>Bergasa, L.M.</creator><creator>Yebes, J. Javier</creator><creator>Almazan, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Traffic panels detection using visual appearance</title><author>Gonzalez, A. ; Bergasa, L.M. ; Yebes, J. Javier ; Almazan, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-92e974b7b192a26a87ad11aa6f83a7dd26263f6fdf233700f4bade41b69f50a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Histograms</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Roads</topic><topic>Sensitivity</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, A.</creatorcontrib><creatorcontrib>Bergasa, L.M.</creatorcontrib><creatorcontrib>Yebes, J. Javier</creatorcontrib><creatorcontrib>Almazan, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gonzalez, A.</au><au>Bergasa, L.M.</au><au>Yebes, J. Javier</au><au>Almazan, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Traffic panels detection using visual appearance</atitle><btitle>2013 IEEE Intelligent Vehicles Symposium (IV)</btitle><stitle>IVS</stitle><date>2013-06</date><risdate>2013</risdate><spage>1221</spage><epage>1226</epage><pages>1221-1226</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><eisbn>1467327549</eisbn><eisbn>9781467327541</eisbn><eisbn>9781467327558</eisbn><eisbn>1467327557</eisbn><abstract>Traffic signs detection has been thoroughly studied for a long time. However, road panels detection still remains a challenge in computer vision due to the huge variability of types of traffic panels, as the information depicted in them is not restricted. This paper presents a method to detect traffic panels in street-level images as an application to Intelligent Transportation Systems (ITS), since the main purpose can be to make an automatic inventory of the traffic panels located in a road to support maintenance and to assist drivers in order to improve human quality of life. The proposed method extracts local descriptors at some interest points after applying a color detection method for blue and white pixels. Then, the images are modeled using a Bag of Visual Words technique and classified using Naïve Bayes theory and SVM. Experimental results on real images from Google Street View prove the efficiency of the proposed method and give way to using street-level images for different applications on robotics and ITS.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2013.6629633</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1931-0587
ispartof 2013 IEEE Intelligent Vehicles Symposium (IV), 2013, p.1221-1226
issn 1931-0587
2642-7214
language eng
recordid cdi_ieee_primary_6629633
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Histograms
Image color analysis
Image edge detection
Roads
Sensitivity
Training
Visualization
title Traffic panels detection using visual appearance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Traffic%20panels%20detection%20using%20visual%20appearance&rft.btitle=2013%20IEEE%20Intelligent%20Vehicles%20Symposium%20(IV)&rft.au=Gonzalez,%20A.&rft.date=2013-06&rft.spage=1221&rft.epage=1226&rft.pages=1221-1226&rft.issn=1931-0587&rft.eissn=2642-7214&rft_id=info:doi/10.1109/IVS.2013.6629633&rft_dat=%3Cieee_6IE%3E6629633%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467327549&rft.eisbn_list=9781467327541&rft.eisbn_list=9781467327558&rft.eisbn_list=1467327557&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6629633&rfr_iscdi=true