Traffic panels detection using visual appearance
Traffic signs detection has been thoroughly studied for a long time. However, road panels detection still remains a challenge in computer vision due to the huge variability of types of traffic panels, as the information depicted in them is not restricted. This paper presents a method to detect traff...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1226 |
---|---|
container_issue | |
container_start_page | 1221 |
container_title | |
container_volume | |
creator | Gonzalez, A. Bergasa, L.M. Yebes, J. Javier Almazan, J. |
description | Traffic signs detection has been thoroughly studied for a long time. However, road panels detection still remains a challenge in computer vision due to the huge variability of types of traffic panels, as the information depicted in them is not restricted. This paper presents a method to detect traffic panels in street-level images as an application to Intelligent Transportation Systems (ITS), since the main purpose can be to make an automatic inventory of the traffic panels located in a road to support maintenance and to assist drivers in order to improve human quality of life. The proposed method extracts local descriptors at some interest points after applying a color detection method for blue and white pixels. Then, the images are modeled using a Bag of Visual Words technique and classified using Naïve Bayes theory and SVM. Experimental results on real images from Google Street View prove the efficiency of the proposed method and give way to using street-level images for different applications on robotics and ITS. |
doi_str_mv | 10.1109/IVS.2013.6629633 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6629633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6629633</ieee_id><sourcerecordid>6629633</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-92e974b7b192a26a87ad11aa6f83a7dd26263f6fdf233700f4bade41b69f50a23</originalsourceid><addsrcrecordid>eNotz0FLwzAUwPEoE-ymd8FLv0Br3kvy0hxl6BwMPLh5Ha9NIpFaS9MJfnsP7vS__eAvxB3IGkC6h-37W40SVE2EjpS6EEvQZBVao92lKJA0VhZBL0QBTkElTWOvxTLnTymNQYRCyP3EMaauHHkIfS59mEM3p--hPOU0fJQ_KZ-4L3kcA088dOFGXEXuc7g9dyUOz0_79Uu1e91s14-7KoE1c-UwOKtb24JDRuLGsgdgptgott4jIalI0UdUykoZdcs-aGjJRSMZ1Urc_7sphHAcp_TF0-_xfKr-ANlPRPQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Traffic panels detection using visual appearance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gonzalez, A. ; Bergasa, L.M. ; Yebes, J. Javier ; Almazan, J.</creator><creatorcontrib>Gonzalez, A. ; Bergasa, L.M. ; Yebes, J. Javier ; Almazan, J.</creatorcontrib><description>Traffic signs detection has been thoroughly studied for a long time. However, road panels detection still remains a challenge in computer vision due to the huge variability of types of traffic panels, as the information depicted in them is not restricted. This paper presents a method to detect traffic panels in street-level images as an application to Intelligent Transportation Systems (ITS), since the main purpose can be to make an automatic inventory of the traffic panels located in a road to support maintenance and to assist drivers in order to improve human quality of life. The proposed method extracts local descriptors at some interest points after applying a color detection method for blue and white pixels. Then, the images are modeled using a Bag of Visual Words technique and classified using Naïve Bayes theory and SVM. Experimental results on real images from Google Street View prove the efficiency of the proposed method and give way to using street-level images for different applications on robotics and ITS.</description><identifier>ISSN: 1931-0587</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1467327549</identifier><identifier>EISBN: 9781467327541</identifier><identifier>EISBN: 9781467327558</identifier><identifier>EISBN: 1467327557</identifier><identifier>DOI: 10.1109/IVS.2013.6629633</identifier><language>eng</language><publisher>IEEE</publisher><subject>Histograms ; Image color analysis ; Image edge detection ; Roads ; Sensitivity ; Training ; Visualization</subject><ispartof>2013 IEEE Intelligent Vehicles Symposium (IV), 2013, p.1221-1226</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6629633$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6629633$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gonzalez, A.</creatorcontrib><creatorcontrib>Bergasa, L.M.</creatorcontrib><creatorcontrib>Yebes, J. Javier</creatorcontrib><creatorcontrib>Almazan, J.</creatorcontrib><title>Traffic panels detection using visual appearance</title><title>2013 IEEE Intelligent Vehicles Symposium (IV)</title><addtitle>IVS</addtitle><description>Traffic signs detection has been thoroughly studied for a long time. However, road panels detection still remains a challenge in computer vision due to the huge variability of types of traffic panels, as the information depicted in them is not restricted. This paper presents a method to detect traffic panels in street-level images as an application to Intelligent Transportation Systems (ITS), since the main purpose can be to make an automatic inventory of the traffic panels located in a road to support maintenance and to assist drivers in order to improve human quality of life. The proposed method extracts local descriptors at some interest points after applying a color detection method for blue and white pixels. Then, the images are modeled using a Bag of Visual Words technique and classified using Naïve Bayes theory and SVM. Experimental results on real images from Google Street View prove the efficiency of the proposed method and give way to using street-level images for different applications on robotics and ITS.</description><subject>Histograms</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Roads</subject><subject>Sensitivity</subject><subject>Training</subject><subject>Visualization</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>1467327549</isbn><isbn>9781467327541</isbn><isbn>9781467327558</isbn><isbn>1467327557</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotz0FLwzAUwPEoE-ymd8FLv0Br3kvy0hxl6BwMPLh5Ha9NIpFaS9MJfnsP7vS__eAvxB3IGkC6h-37W40SVE2EjpS6EEvQZBVao92lKJA0VhZBL0QBTkElTWOvxTLnTymNQYRCyP3EMaauHHkIfS59mEM3p--hPOU0fJQ_KZ-4L3kcA088dOFGXEXuc7g9dyUOz0_79Uu1e91s14-7KoE1c-UwOKtb24JDRuLGsgdgptgott4jIalI0UdUykoZdcs-aGjJRSMZ1Urc_7sphHAcp_TF0-_xfKr-ANlPRPQ</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Gonzalez, A.</creator><creator>Bergasa, L.M.</creator><creator>Yebes, J. Javier</creator><creator>Almazan, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Traffic panels detection using visual appearance</title><author>Gonzalez, A. ; Bergasa, L.M. ; Yebes, J. Javier ; Almazan, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-92e974b7b192a26a87ad11aa6f83a7dd26263f6fdf233700f4bade41b69f50a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Histograms</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Roads</topic><topic>Sensitivity</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, A.</creatorcontrib><creatorcontrib>Bergasa, L.M.</creatorcontrib><creatorcontrib>Yebes, J. Javier</creatorcontrib><creatorcontrib>Almazan, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gonzalez, A.</au><au>Bergasa, L.M.</au><au>Yebes, J. Javier</au><au>Almazan, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Traffic panels detection using visual appearance</atitle><btitle>2013 IEEE Intelligent Vehicles Symposium (IV)</btitle><stitle>IVS</stitle><date>2013-06</date><risdate>2013</risdate><spage>1221</spage><epage>1226</epage><pages>1221-1226</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><eisbn>1467327549</eisbn><eisbn>9781467327541</eisbn><eisbn>9781467327558</eisbn><eisbn>1467327557</eisbn><abstract>Traffic signs detection has been thoroughly studied for a long time. However, road panels detection still remains a challenge in computer vision due to the huge variability of types of traffic panels, as the information depicted in them is not restricted. This paper presents a method to detect traffic panels in street-level images as an application to Intelligent Transportation Systems (ITS), since the main purpose can be to make an automatic inventory of the traffic panels located in a road to support maintenance and to assist drivers in order to improve human quality of life. The proposed method extracts local descriptors at some interest points after applying a color detection method for blue and white pixels. Then, the images are modeled using a Bag of Visual Words technique and classified using Naïve Bayes theory and SVM. Experimental results on real images from Google Street View prove the efficiency of the proposed method and give way to using street-level images for different applications on robotics and ITS.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2013.6629633</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1931-0587 |
ispartof | 2013 IEEE Intelligent Vehicles Symposium (IV), 2013, p.1221-1226 |
issn | 1931-0587 2642-7214 |
language | eng |
recordid | cdi_ieee_primary_6629633 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Histograms Image color analysis Image edge detection Roads Sensitivity Training Visualization |
title | Traffic panels detection using visual appearance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Traffic%20panels%20detection%20using%20visual%20appearance&rft.btitle=2013%20IEEE%20Intelligent%20Vehicles%20Symposium%20(IV)&rft.au=Gonzalez,%20A.&rft.date=2013-06&rft.spage=1221&rft.epage=1226&rft.pages=1221-1226&rft.issn=1931-0587&rft.eissn=2642-7214&rft_id=info:doi/10.1109/IVS.2013.6629633&rft_dat=%3Cieee_6IE%3E6629633%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467327549&rft.eisbn_list=9781467327541&rft.eisbn_list=9781467327558&rft.eisbn_list=1467327557&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6629633&rfr_iscdi=true |